

Welcome to Flask

[image: Flask: web development, one drop at a time]
Welcome to Flask’s documentation. This documentation is divided into
different parts. I recommend that you get started with
Installation and then head over to the Quickstart.
Besides the quickstart, there is also a more detailed Tutorial that
shows how to create a complete (albeit small) application with Flask. If
you’d rather dive into the internals of Flask, check out
the API documentation. Common patterns are described in the
Patterns for Flask section.

Flask depends on two external libraries: the Jinja2 [http://jinja.pocoo.org/] template
engine and the Werkzeug [http://werkzeug.pocoo.org/] WSGI toolkit. These libraries are not documented
here. If you want to dive into their documentation, check out the
following links:

	Jinja2 Documentation [http://jinja.pocoo.org/docs]

	Werkzeug Documentation [http://werkzeug.pocoo.org/docs]

User’s Guide

This part of the documentation, which is mostly prose, begins with some
background information about Flask, then focuses on step-by-step
instructions for web development with Flask.

	Foreword
	What does “micro” mean?

	Configuration and Conventions

	Growing with Flask

	Foreword for Experienced Programmers
	Thread-Locals in Flask

	Develop for the Web with Caution

	Python 3 Support in Flask

	Installation
	virtualenv

	System-Wide Installation

	Living on the Edge

	pip and setuptools on Windows

	Quickstart
	A Minimal Application

	What to do if the Server does not Start

	Debug Mode

	Routing

	Static Files

	Rendering Templates

	Accessing Request Data

	Redirects and Errors

	About Responses

	Sessions

	Message Flashing

	Logging

	Hooking in WSGI Middlewares

	Using Flask Extensions

	Deploying to a Web Server

	Tutorial
	Introducing Flaskr

	Step 0: Creating The Folders

	Step 1: Database Schema

	Step 2: Application Setup Code

	Step 3: Installing flaskr as a Package

	Step 4: Database Connections

	Step 5: Creating The Database

	Step 6: The View Functions

	Step 7: The Templates

	Step 8: Adding Style

	Bonus: Testing the Application

	Templates
	Jinja Setup

	Standard Context

	Standard Filters

	Controlling Autoescaping

	Registering Filters

	Context Processors

	Testing Flask Applications
	The Application

	The Testing Skeleton

	The First Test

	Logging In and Out

	Test Adding Messages

	Other Testing Tricks

	Faking Resources and Context

	Keeping the Context Around

	Accessing and Modifying Sessions

	Application Errors
	Error Logging Tools

	Error handlers

	Error Mails

	Logging to a File

	Controlling the Log Format

	Other Libraries

	Debugging Application Errors
	When in Doubt, Run Manually

	Working with Debuggers

	Configuration Handling
	Configuration Basics

	Builtin Configuration Values

	Configuring from Files

	Configuration Best Practices

	Development / Production

	Instance Folders

	Signals
	Subscribing to Signals

	Creating Signals

	Sending Signals

	Signals and Flask’s Request Context

	Decorator Based Signal Subscriptions

	Core Signals

	Pluggable Views
	Basic Principle

	Method Hints

	Method Based Dispatching

	Decorating Views

	Method Views for APIs

	The Application Context
	Purpose of the Application Context

	Creating an Application Context

	Locality of the Context

	Context Usage

	The Request Context
	Diving into Context Locals

	How the Context Works

	Callbacks and Errors

	Teardown Callbacks

	Notes On Proxies

	Context Preservation on Error

	Modular Applications with Blueprints
	Why Blueprints?

	The Concept of Blueprints

	My First Blueprint

	Registering Blueprints

	Blueprint Resources

	Building URLs

	Error Handlers

	Flask Extensions
	Finding Extensions

	Using Extensions

	Building Extensions

	Flask Before 0.8

	Command Line Interface
	Basic Usage

	Virtualenv Integration

	Debug Flag

	Running a Shell

	Custom Commands

	Application Context

	Factory Functions

	Custom Scripts

	CLI Plugins

	Development Server
	Command Line

	In Code

	Working with the Shell
	Command Line Interface

	Creating a Request Context

	Firing Before/After Request

	Further Improving the Shell Experience

	Patterns for Flask
	Larger Applications

	Application Factories

	Application Dispatching

	Implementing API Exceptions

	Using URL Processors

	Deploying with Setuptools

	Deploying with Fabric

	Using SQLite 3 with Flask

	SQLAlchemy in Flask

	Uploading Files

	Caching

	View Decorators

	Form Validation with WTForms

	Template Inheritance

	Message Flashing

	AJAX with jQuery

	Custom Error Pages

	Lazily Loading Views

	MongoKit in Flask

	Adding a favicon

	Streaming Contents

	Deferred Request Callbacks

	Adding HTTP Method Overrides

	Request Content Checksums

	Celery Based Background Tasks

	Subclassing Flask

	Deployment Options
	Hosted options

	Self-hosted options

	Becoming Big
	Read the Source.

	Hook. Extend.

	Subclass.

	Wrap with middleware.

	Fork.

	Scale like a pro.

	Discuss with the community.

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API
	Application Object

	Blueprint Objects

	Incoming Request Data

	Response Objects

	Sessions

	Session Interface

	Test Client

	Application Globals

	Useful Functions and Classes

	Message Flashing

	JSON Support

	Template Rendering

	Configuration

	Extensions

	Stream Helpers

	Useful Internals

	Signals

	Class-Based Views

	URL Route Registrations

	View Function Options

	Command Line Interface

Additional Notes

Design notes, legal information and changelog are here for the interested.

	Design Decisions in Flask
	The Explicit Application Object

	The Routing System

	One Template Engine

	Micro with Dependencies

	Thread Locals

	What Flask is, What Flask is Not

	HTML/XHTML FAQ
	History of XHTML

	History of HTML5

	HTML versus XHTML

	What does “strict” mean?

	New technologies in HTML5

	What should be used?

	Security Considerations
	Cross-Site Scripting (XSS)

	Cross-Site Request Forgery (CSRF)

	JSON Security

	Unicode in Flask
	Automatic Conversion

	The Golden Rule

	Encoding and Decoding Yourself

	Configuring Editors

	Flask Extension Development
	Anatomy of an Extension

	“Hello Flaskext!”

	Initializing Extensions

	The Extension Code

	Using _app_ctx_stack

	Teardown Behavior

	Learn from Others

	Approved Extensions

	Extension Import Transition

	Pocoo Styleguide
	General Layout

	Expressions and Statements

	Naming Conventions

	Docstrings

	Comments

	Python 3 Support

	Upgrading to Newer Releases
	Version 0.12

	Version 0.11

	Version 0.10

	Version 0.9

	Version 0.8

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3

	Flask Changelog
	Version 0.13

	Version 0.12.2

	Version 0.12.1

	Version 0.12

	Version 0.11.2

	Version 0.11.1

	Version 0.11

	Version 0.10.2

	Version 0.10.1

	Version 0.10

	Version 0.9

	Version 0.8.1

	Version 0.8

	Version 0.7.3

	Version 0.7.2

	Version 0.7.1

	Version 0.7

	Version 0.6.1

	Version 0.6

	Version 0.5.2

	Version 0.5.1

	Version 0.5

	Version 0.4

	Version 0.3.1

	Version 0.3

	Version 0.2

	Version 0.1

	License
	Authors

	General License Definitions

	Flask License

	Flask Artwork License

Foreword

Read this before you get started with Flask. This hopefully answers some
questions about the purpose and goals of the project, and when you
should or should not be using it.

What does “micro” mean?

“Micro” does not mean that your whole web application has to fit into a single
Python file (although it certainly can), nor does it mean that Flask is lacking
in functionality. The “micro” in microframework means Flask aims to keep the
core simple but extensible. Flask won’t make many decisions for you, such as
what database to use. Those decisions that it does make, such as what
templating engine to use, are easy to change. Everything else is up to you, so
that Flask can be everything you need and nothing you don’t.

By default, Flask does not include a database abstraction layer, form
validation or anything else where different libraries already exist that can
handle that. Instead, Flask supports extensions to add such functionality to
your application as if it was implemented in Flask itself. Numerous extensions
provide database integration, form validation, upload handling, various open
authentication technologies, and more. Flask may be “micro”, but it’s ready for
production use on a variety of needs.

Configuration and Conventions

Flask has many configuration values, with sensible defaults, and a few
conventions when getting started. By convention, templates and static files are
stored in subdirectories within the application’s Python source tree, with the
names templates and static respectively. While this can be changed, you
usually don’t have to, especially when getting started.

Growing with Flask

Once you have Flask up and running, you’ll find a variety of extensions
available in the community to integrate your project for production. The Flask
core team reviews extensions and ensures approved extensions do not break with
future releases.

As your codebase grows, you are free to make the design decisions appropriate
for your project. Flask will continue to provide a very simple glue layer to
the best that Python has to offer. You can implement advanced patterns in
SQLAlchemy or another database tool, introduce non-relational data persistence
as appropriate, and take advantage of framework-agnostic tools built for WSGI,
the Python web interface.

Flask includes many hooks to customize its behavior. Should you need more
customization, the Flask class is built for subclassing. If you are interested
in that, check out the Becoming Big chapter. If you are curious about
the Flask design principles, head over to the section about Design Decisions in Flask.

Continue to Installation, the Quickstart, or the
Foreword for Experienced Programmers.

Foreword for Experienced Programmers

Thread-Locals in Flask

One of the design decisions in Flask was that simple tasks should be simple;
they should not take a lot of code and yet they should not limit you. Because
of that, Flask has a few design choices that some people might find surprising or
unorthodox. For example, Flask uses thread-local objects internally so that you
don’t have to pass objects around from function to function within a request in
order to stay threadsafe. This approach is convenient, but requires a valid
request context for dependency injection or when attempting to reuse code which
uses a value pegged to the request. The Flask project is honest about
thread-locals, does not hide them, and calls out in the code and documentation
where they are used.

Develop for the Web with Caution

Always keep security in mind when building web applications.

If you write a web application, you are probably allowing users to register
and leave their data on your server. The users are entrusting you with data.
And even if you are the only user that might leave data in your application,
you still want that data to be stored securely.

Unfortunately, there are many ways the security of a web application can be
compromised. Flask protects you against one of the most common security
problems of modern web applications: cross-site scripting (XSS). Unless you
deliberately mark insecure HTML as secure, Flask and the underlying Jinja2
template engine have you covered. But there are many more ways to cause
security problems.

The documentation will warn you about aspects of web development that require
attention to security. Some of these security concerns are far more complex
than one might think, and we all sometimes underestimate the likelihood that a
vulnerability will be exploited - until a clever attacker figures out a way to
exploit our applications. And don’t think that your application is not
important enough to attract an attacker. Depending on the kind of attack,
chances are that automated bots are probing for ways to fill your database with
spam, links to malicious software, and the like.

Flask is no different from any other framework in that you the developer must
build with caution, watching for exploits when building to your requirements.

Python 3 Support in Flask

Flask, its dependencies, and most Flask extensions all support Python 3.
If you want to use Flask with Python 3 have a look at the Python 3 Support page.

Continue to Installation or the Quickstart.

Installation

Flask depends on some external libraries, like Werkzeug [http://werkzeug.pocoo.org/] and Jinja2 [http://jinja.pocoo.org/].
Werkzeug is a toolkit for WSGI, the standard Python interface between web
applications and a variety of servers for both development and deployment.
Jinja2 renders templates.

So how do you get all that on your computer quickly? There are many ways you
could do that, but the most kick-ass method is virtualenv, so let’s have a look
at that first.

You will need Python 2.6 or newer to get started, so be sure to have an
up-to-date Python 2.x installation. For using Flask with Python 3 have a
look at Python 3 Support.

virtualenv

Virtualenv is probably what you want to use during development, and if you have
shell access to your production machines, you’ll probably want to use it there,
too.

What problem does virtualenv solve? If you like Python as much as I do,
chances are you want to use it for other projects besides Flask-based web
applications. But the more projects you have, the more likely it is that you
will be working with different versions of Python itself, or at least different
versions of Python libraries. Let’s face it: quite often libraries break
backwards compatibility, and it’s unlikely that any serious application will
have zero dependencies. So what do you do if two or more of your projects have
conflicting dependencies?

Virtualenv to the rescue! Virtualenv enables multiple side-by-side
installations of Python, one for each project. It doesn’t actually install
separate copies of Python, but it does provide a clever way to keep different
project environments isolated. Let’s see how virtualenv works.

If you are on Mac OS X or Linux, chances are that the following
command will work for you:

$ sudo pip install virtualenv

It will probably install virtualenv on your system. Maybe it’s even
in your package manager. If you use Ubuntu, try:

$ sudo apt-get install python-virtualenv

If you are on Windows and don’t have the easy_install command, you must
install it first. Check the pip and setuptools on Windows section for more
information about how to do that. Once you have it installed, run the same
commands as above, but without the sudo prefix.

Once you have virtualenv installed, just fire up a shell and create
your own environment. I usually create a project folder and a venv
folder within:

$ mkdir myproject
$ cd myproject
$ virtualenv venv
New python executable in venv/bin/python
Installing setuptools, pip............done.

Now, whenever you want to work on a project, you only have to activate the
corresponding environment. On OS X and Linux, do the following:

$. venv/bin/activate

If you are a Windows user, the following command is for you:

$ venv\Scripts\activate

Either way, you should now be using your virtualenv (notice how the prompt of
your shell has changed to show the active environment).

And if you want to go back to the real world, use the following command:

$ deactivate

After doing this, the prompt of your shell should be as familiar as before.

Now, let’s move on. Enter the following command to get Flask activated in your
virtualenv:

$ pip install Flask

A few seconds later and you are good to go.

System-Wide Installation

This is possible as well, though I do not recommend it. Just run
pip with root privileges:

$ sudo pip install Flask

(On Windows systems, run it in a command-prompt window with administrator
privileges, and leave out sudo.)

Living on the Edge

If you want to work with the latest version of Flask, there are two ways: you
can either let pip pull in the development version, or you can tell
it to operate on a git checkout. Either way, virtualenv is recommended.

Get the git checkout in a new virtualenv and run in development mode:

$ git clone http://github.com/pallets/flask.git
Initialized empty Git repository in ~/dev/flask/.git/
$ cd flask
$ virtualenv venv
New python executable in venv/bin/python
Installing setuptools, pip............done.
$. venv/bin/activate
$ python setup.py develop
...
Finished processing dependencies for Flask

This will pull in the dependencies and activate the git head as the current
version inside the virtualenv. Then all you have to do is run git pull
origin to update to the latest version.

pip and setuptools on Windows

Sometimes getting the standard “Python packaging tools” like pip, setuptools
and virtualenv can be a little trickier, but nothing very hard. The crucial
package you will need is pip - this will let you install
anything else (like virtualenv). Fortunately there is a “bootstrap script”
you can run to install.

If you don’t currently have pip, then get-pip.py will install it for you.

get-pip.py [https://bootstrap.pypa.io/get-pip.py]

It should be double-clickable once you download it. If you already have pip,
you can upgrade them by running:

> pip install --upgrade pip setuptools

Most often, once you pull up a command prompt you want to be able to type pip
and python which will run those things, but this might not automatically happen
on Windows, because it doesn’t know where those executables are (give either a try!).

To fix this, you should be able to navigate to your Python install directory
(e.g C:Python27), then go to Tools, then Scripts, then find the
win_add2path.py file and run that. Open a new Command Prompt and
check that you can now just type python to bring up the interpreter.

Finally, to install virtualenv, you can simply run:

> pip install virtualenv

Then you can be off on your way following the installation instructions above.

Quickstart

Eager to get started? This page gives a good introduction to Flask. It
assumes you already have Flask installed. If you do not, head over to the
Installation section.

A Minimal Application

A minimal Flask application looks something like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

So what did that code do?

	First we imported the Flask class. An instance of this
class will be our WSGI application.

	Next we create an instance of this class. The first argument is the name of
the application’s module or package. If you are using a single module (as
in this example), you should use __name__ because depending on if it’s
started as application or imported as module the name will be different
('__main__' versus the actual import name). This is needed so that
Flask knows where to look for templates, static files, and so on. For more
information have a look at the Flask documentation.

	We then use the route() decorator to tell Flask what URL
should trigger our function.

	The function is given a name which is also used to generate URLs for that
particular function, and returns the message we want to display in the
user’s browser.

Just save it as hello.py or something similar. Make sure to not call
your application flask.py because this would conflict with Flask
itself.

To run the application you can either use the flask command or
python’s -m switch with Flask. Before you can do that you need
to tell your terminal the application to work with by exporting the
FLASK_APP environment variable:

$ export FLASK_APP=hello.py
$ flask run
 * Running on http://127.0.0.1:5000/

If you are on Windows you need to use set instead of export.

Alternatively you can use python -m flask:

$ export FLASK_APP=hello.py
$ python -m flask run
 * Running on http://127.0.0.1:5000/

This launches a very simple builtin server, which is good enough for testing
but probably not what you want to use in production. For deployment options see
Deployment Options.

Now head over to http://127.0.0.1:5000/, and you
should see your hello world greeting.

Externally Visible Server

If you run the server you will notice that the server is only accessible
from your own computer, not from any other in the network. This is the
default because in debugging mode a user of the application can execute
arbitrary Python code on your computer.

If you have the debugger disabled or trust the users on your network,
you can make the server publicly available simply by adding
--host=0.0.0.0 to the command line:

flask run --host=0.0.0.0

This tells your operating system to listen on all public IPs.

What to do if the Server does not Start

In case the python -m flask fails or flask does not exist,
there are multiple reasons this might be the case. First of all you need
to look at the error message.

Old Version of Flask

Versions of Flask older than 0.11 use to have different ways to start the
application. In short, the flask command did not exist, and
neither did python -m flask. In that case you have two options:
either upgrade to newer Flask versions or have a look at the Development Server
docs to see the alternative method for running a server.

Invalid Import Name

The FLASK_APP environment variable is the name of the module to import at
flask run. In case that module is incorrectly named you will get an
import error upon start (or if debug is enabled when you navigate to the
application). It will tell you what it tried to import and why it failed.

The most common reason is a typo or because you did not actually create an
app object.

Debug Mode

(Want to just log errors and stack traces? See Application Errors)

The flask script is nice to start a local development server, but
you would have to restart it manually after each change to your code.
That is not very nice and Flask can do better. If you enable debug
support the server will reload itself on code changes, and it will also
provide you with a helpful debugger if things go wrong.

To enable debug mode you can export the FLASK_DEBUG environment variable
before running the server:

$ export FLASK_DEBUG=1
$ flask run

(On Windows you need to use set instead of export).

This does the following things:

	it activates the debugger

	it activates the automatic reloader

	it enables the debug mode on the Flask application.

There are more parameters that are explained in the Development Server docs.

Attention

Even though the interactive debugger does not work in forking environments
(which makes it nearly impossible to use on production servers), it still
allows the execution of arbitrary code. This makes it a major security risk
and therefore it must never be used on production machines.

Screenshot of the debugger in action:

[image: screenshot of debugger in action]
Have another debugger in mind? See Working with Debuggers.

Routing

Modern web applications have beautiful URLs. This helps people remember
the URLs, which is especially handy for applications that are used from
mobile devices with slower network connections. If the user can directly
go to the desired page without having to hit the index page it is more
likely they will like the page and come back next time.

As you have seen above, the route() decorator is used to
bind a function to a URL. Here are some basic examples:

@app.route('/')
def index():
 return 'Index Page'

@app.route('/hello')
def hello():
 return 'Hello, World'

But there is more to it! You can make certain parts of the URL dynamic and
attach multiple rules to a function.

Variable Rules

To add variable parts to a URL you can mark these special sections as
<variable_name>. Such a part is then passed as a keyword argument to your
function. Optionally a converter can be used by specifying a rule with
<converter:variable_name>. Here are some nice examples:

@app.route('/user/<username>')
def show_user_profile(username):
 # show the user profile for that user
 return 'User %s' % username

@app.route('/post/<int:post_id>')
def show_post(post_id):
 # show the post with the given id, the id is an integer
 return 'Post %d' % post_id

The following converters exist:

	string
	accepts any text without a slash (the default)

	int
	accepts integers

	float
	like int but for floating point values

	path
	like the default but also accepts slashes

	any
	matches one of the items provided

	uuid
	accepts UUID strings

Unique URLs / Redirection Behavior

Flask’s URL rules are based on Werkzeug’s routing module. The idea
behind that module is to ensure beautiful and unique URLs based on
precedents laid down by Apache and earlier HTTP servers.

Take these two rules:

@app.route('/projects/')
def projects():
 return 'The project page'

@app.route('/about')
def about():
 return 'The about page'

Though they look rather similar, they differ in their use of the trailing
slash in the URL definition. In the first case, the canonical URL for the
projects endpoint has a trailing slash. In that sense, it is similar to
a folder on a filesystem. Accessing it without a trailing slash will cause
Flask to redirect to the canonical URL with the trailing slash.

In the second case, however, the URL is defined without a trailing slash,
rather like the pathname of a file on UNIX-like systems. Accessing the URL
with a trailing slash will produce a 404 “Not Found” error.

This behavior allows relative URLs to continue working even if the trailing
slash is omitted, consistent with how Apache and other servers work. Also,
the URLs will stay unique, which helps search engines avoid indexing the
same page twice.

URL Building

If it can match URLs, can Flask also generate them? Of course it can. To
build a URL to a specific function you can use the url_for()
function. It accepts the name of the function as first argument and a number
of keyword arguments, each corresponding to the variable part of the URL rule.
Unknown variable parts are appended to the URL as query parameters. Here are
some examples:

>>> from flask import Flask, url_for
>>> app = Flask(__name__)
>>> @app.route('/')
... def index(): pass
...
>>> @app.route('/login')
... def login(): pass
...
>>> @app.route('/user/<username>')
... def profile(username): pass
...
>>> with app.test_request_context():
... print url_for('index')
... print url_for('login')
... print url_for('login', next='/')
... print url_for('profile', username='John Doe')
...
/
/login
/login?next=/
/user/John%20Doe

(This also uses the test_request_context() method, explained
below. It tells Flask to behave as though it is handling a request, even
though we are interacting with it through a Python shell. Have a look at the
explanation below. Context Locals).

Why would you want to build URLs using the URL reversing function
url_for() instead of hard-coding them into your templates?
There are three good reasons for this:

	Reversing is often more descriptive than hard-coding the URLs. More
importantly, it allows you to change URLs in one go, without having to
remember to change URLs all over the place.

	URL building will handle escaping of special characters and Unicode
data transparently for you, so you don’t have to deal with them.

	If your application is placed outside the URL root - say, in
/myapplication instead of / - url_for() will handle
that properly for you.

HTTP Methods

HTTP (the protocol web applications are speaking) knows different methods for
accessing URLs. By default, a route only answers to GET requests, but that
can be changed by providing the methods argument to the
route() decorator. Here are some examples:

from flask import request

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 do_the_login()
 else:
 show_the_login_form()

If GET is present, HEAD will be added automatically for you. You
don’t have to deal with that. It will also make sure that HEAD requests
are handled as the HTTP RFC [http://www.ietf.org/rfc/rfc2068.txt] (the document describing the HTTP
protocol) demands, so you can completely ignore that part of the HTTP
specification. Likewise, as of Flask 0.6, OPTIONS is implemented for you
automatically as well.

You have no idea what an HTTP method is? Worry not, here is a quick
introduction to HTTP methods and why they matter:

The HTTP method (also often called “the verb”) tells the server what the
client wants to do with the requested page. The following methods are
very common:

	GET

	The browser tells the server to just get the information stored on
that page and send it. This is probably the most common method.

	HEAD

	The browser tells the server to get the information, but it is only
interested in the headers, not the content of the page. An
application is supposed to handle that as if a GET request was
received but to not deliver the actual content. In Flask you don’t
have to deal with that at all, the underlying Werkzeug library handles
that for you.

	POST

	The browser tells the server that it wants to post some new
information to that URL and that the server must ensure the data is
stored and only stored once. This is how HTML forms usually
transmit data to the server.

	PUT

	Similar to POST but the server might trigger the store procedure
multiple times by overwriting the old values more than once. Now you
might be asking why this is useful, but there are some good reasons
to do it this way. Consider that the connection is lost during
transmission: in this situation a system between the browser and the
server might receive the request safely a second time without breaking
things. With POST that would not be possible because it must only
be triggered once.

	DELETE

	Remove the information at the given location.

	OPTIONS

	Provides a quick way for a client to figure out which methods are
supported by this URL. Starting with Flask 0.6, this is implemented
for you automatically.

Now the interesting part is that in HTML4 and XHTML1, the only methods a
form can submit to the server are GET and POST. But with JavaScript
and future HTML standards you can use the other methods as well. Furthermore
HTTP has become quite popular lately and browsers are no longer the only
clients that are using HTTP. For instance, many revision control systems
use it.

Static Files

Dynamic web applications also need static files. That’s usually where
the CSS and JavaScript files are coming from. Ideally your web server is
configured to serve them for you, but during development Flask can do that
as well. Just create a folder called static in your package or next to
your module and it will be available at /static on the application.

To generate URLs for static files, use the special 'static' endpoint name:

url_for('static', filename='style.css')

The file has to be stored on the filesystem as static/style.css.

Rendering Templates

Generating HTML from within Python is not fun, and actually pretty
cumbersome because you have to do the HTML escaping on your own to keep
the application secure. Because of that Flask configures the Jinja2 [http://jinja.pocoo.org/] template engine for you automatically.

To render a template you can use the render_template()
method. All you have to do is provide the name of the template and the
variables you want to pass to the template engine as keyword arguments.
Here’s a simple example of how to render a template:

from flask import render_template

@app.route('/hello/')
@app.route('/hello/<name>')
def hello(name=None):
 return render_template('hello.html', name=name)

Flask will look for templates in the templates folder. So if your
application is a module, this folder is next to that module, if it’s a
package it’s actually inside your package:

Case 1: a module:

/application.py
/templates
 /hello.html

Case 2: a package:

/application
 /__init__.py
 /templates
 /hello.html

For templates you can use the full power of Jinja2 templates. Head over
to the official Jinja2 Template Documentation [http://jinja.pocoo.org/docs/templates] for more information.

Here is an example template:

<!doctype html>
<title>Hello from Flask</title>
{% if name %}
 <h1>Hello {{ name }}!</h1>
{% else %}
 <h1>Hello, World!</h1>
{% endif %}

Inside templates you also have access to the request,
session and g [1] objects
as well as the get_flashed_messages() function.

Templates are especially useful if inheritance is used. If you want to
know how that works, head over to the Template Inheritance pattern
documentation. Basically template inheritance makes it possible to keep
certain elements on each page (like header, navigation and footer).

Automatic escaping is enabled, so if name contains HTML it will be escaped
automatically. If you can trust a variable and you know that it will be
safe HTML (for example because it came from a module that converts wiki
markup to HTML) you can mark it as safe by using the
Markup [http://jinja.pocoo.org/docs/api/#jinja2.Markup] class or by using the |safe filter in the
template. Head over to the Jinja 2 documentation for more examples.

Here is a basic introduction to how the Markup [http://jinja.pocoo.org/docs/api/#jinja2.Markup] class works:

>>> from flask import Markup
>>> Markup('Hello %s!') % '<blink>hacker</blink>'
Markup(u'Hello <blink>hacker</blink>!')
>>> Markup.escape('<blink>hacker</blink>')
Markup(u'<blink>hacker</blink>')
>>> Markup('Marked up » HTML').striptags()
u'Marked up \xbb HTML'

Changed in version 0.5: Autoescaping is no longer enabled for all templates. The following
extensions for templates trigger autoescaping: .html, .htm,
.xml, .xhtml. Templates loaded from a string will have
autoescaping disabled.

	[1]	Unsure what that g object is? It’s something in which
you can store information for your own needs, check the documentation of
that object (g) and the Using SQLite 3 with Flask for more
information.

Accessing Request Data

For web applications it’s crucial to react to the data a client sends to
the server. In Flask this information is provided by the global
request object. If you have some experience with Python
you might be wondering how that object can be global and how Flask
manages to still be threadsafe. The answer is context locals:

Context Locals

Insider Information

If you want to understand how that works and how you can implement
tests with context locals, read this section, otherwise just skip it.

Certain objects in Flask are global objects, but not of the usual kind.
These objects are actually proxies to objects that are local to a specific
context. What a mouthful. But that is actually quite easy to understand.

Imagine the context being the handling thread. A request comes in and the
web server decides to spawn a new thread (or something else, the
underlying object is capable of dealing with concurrency systems other
than threads). When Flask starts its internal request handling it
figures out that the current thread is the active context and binds the
current application and the WSGI environments to that context (thread).
It does that in an intelligent way so that one application can invoke another
application without breaking.

So what does this mean to you? Basically you can completely ignore that
this is the case unless you are doing something like unit testing. You
will notice that code which depends on a request object will suddenly break
because there is no request object. The solution is creating a request
object yourself and binding it to the context. The easiest solution for
unit testing is to use the test_request_context()
context manager. In combination with the with statement it will bind a
test request so that you can interact with it. Here is an example:

from flask import request

with app.test_request_context('/hello', method='POST'):
 # now you can do something with the request until the
 # end of the with block, such as basic assertions:
 assert request.path == '/hello'
 assert request.method == 'POST'

The other possibility is passing a whole WSGI environment to the
request_context() method:

from flask import request

with app.request_context(environ):
 assert request.method == 'POST'

The Request Object

The request object is documented in the API section and we will not cover
it here in detail (see request). Here is a broad overview of
some of the most common operations. First of all you have to import it from
the flask module:

from flask import request

The current request method is available by using the
method attribute. To access form data (data
transmitted in a POST or PUT request) you can use the
form attribute. Here is a full example of the two
attributes mentioned above:

@app.route('/login', methods=['POST', 'GET'])
def login():
 error = None
 if request.method == 'POST':
 if valid_login(request.form['username'],
 request.form['password']):
 return log_the_user_in(request.form['username'])
 else:
 error = 'Invalid username/password'
 # the code below is executed if the request method
 # was GET or the credentials were invalid
 return render_template('login.html', error=error)

What happens if the key does not exist in the form attribute? In that
case a special KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised. You can catch it like a
standard KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] but if you don’t do that, a HTTP 400 Bad Request
error page is shown instead. So for many situations you don’t have to
deal with that problem.

To access parameters submitted in the URL (?key=value) you can use the
args attribute:

searchword = request.args.get('key', '')

We recommend accessing URL parameters with get or by catching the
KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] because users might change the URL and presenting them a 400
bad request page in that case is not user friendly.

For a full list of methods and attributes of the request object, head over
to the request documentation.

File Uploads

You can handle uploaded files with Flask easily. Just make sure not to
forget to set the enctype="multipart/form-data" attribute on your HTML
form, otherwise the browser will not transmit your files at all.

Uploaded files are stored in memory or at a temporary location on the
filesystem. You can access those files by looking at the
files attribute on the request object. Each
uploaded file is stored in that dictionary. It behaves just like a
standard Python file object, but it also has a
save() [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.save] method that allows you to store that
file on the filesystem of the server. Here is a simple example showing how
that works:

from flask import request

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
 f = request.files['the_file']
 f.save('/var/www/uploads/uploaded_file.txt')
 ...

If you want to know how the file was named on the client before it was
uploaded to your application, you can access the
filename [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.filename] attribute. However please keep in
mind that this value can be forged so never ever trust that value. If you
want to use the filename of the client to store the file on the server,
pass it through the secure_filename() [http://werkzeug.pocoo.org/docs/utils/#werkzeug.utils.secure_filename] function that
Werkzeug provides for you:

from flask import request
from werkzeug.utils import secure_filename

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
 f = request.files['the_file']
 f.save('/var/www/uploads/' + secure_filename(f.filename))
 ...

For some better examples, checkout the Uploading Files pattern.

Cookies

To access cookies you can use the cookies
attribute. To set cookies you can use the
set_cookie method of response objects. The
cookies attribute of request objects is a
dictionary with all the cookies the client transmits. If you want to use
sessions, do not use the cookies directly but instead use the
Sessions in Flask that add some security on top of cookies for you.

Reading cookies:

from flask import request

@app.route('/')
def index():
 username = request.cookies.get('username')
 # use cookies.get(key) instead of cookies[key] to not get a
 # KeyError if the cookie is missing.

Storing cookies:

from flask import make_response

@app.route('/')
def index():
 resp = make_response(render_template(...))
 resp.set_cookie('username', 'the username')
 return resp

Note that cookies are set on response objects. Since you normally
just return strings from the view functions Flask will convert them into
response objects for you. If you explicitly want to do that you can use
the make_response() function and then modify it.

Sometimes you might want to set a cookie at a point where the response
object does not exist yet. This is possible by utilizing the
Deferred Request Callbacks pattern.

For this also see About Responses.

Redirects and Errors

To redirect a user to another endpoint, use the redirect()
function; to abort a request early with an error code, use the
abort() function:

from flask import abort, redirect, url_for

@app.route('/')
def index():
 return redirect(url_for('login'))

@app.route('/login')
def login():
 abort(401)
 this_is_never_executed()

This is a rather pointless example because a user will be redirected from
the index to a page they cannot access (401 means access denied) but it
shows how that works.

By default a black and white error page is shown for each error code. If
you want to customize the error page, you can use the
errorhandler() decorator:

from flask import render_template

@app.errorhandler(404)
def page_not_found(error):
 return render_template('page_not_found.html'), 404

Note the 404 after the render_template() call. This
tells Flask that the status code of that page should be 404 which means
not found. By default 200 is assumed which translates to: all went well.

See Error handlers for more details.

About Responses

The return value from a view function is automatically converted into a
response object for you. If the return value is a string it’s converted
into a response object with the string as response body, a 200 OK
status code and a text/html mimetype. The logic that Flask applies to
converting return values into response objects is as follows:

	If a response object of the correct type is returned it’s directly
returned from the view.

	If it’s a string, a response object is created with that data and the
default parameters.

	If a tuple is returned the items in the tuple can provide extra
information. Such tuples have to be in the form (response, status,
headers) or (response, headers) where at least one item has
to be in the tuple. The status value will override the status code
and headers can be a list or dictionary of additional header values.

	If none of that works, Flask will assume the return value is a
valid WSGI application and convert that into a response object.

If you want to get hold of the resulting response object inside the view
you can use the make_response() function.

Imagine you have a view like this:

@app.errorhandler(404)
def not_found(error):
 return render_template('error.html'), 404

You just need to wrap the return expression with
make_response() and get the response object to modify it, then
return it:

@app.errorhandler(404)
def not_found(error):
 resp = make_response(render_template('error.html'), 404)
 resp.headers['X-Something'] = 'A value'
 return resp

Sessions

In addition to the request object there is also a second object called
session which allows you to store information specific to a
user from one request to the next. This is implemented on top of cookies
for you and signs the cookies cryptographically. What this means is that
the user could look at the contents of your cookie but not modify it,
unless they know the secret key used for signing.

In order to use sessions you have to set a secret key. Here is how
sessions work:

from flask import Flask, session, redirect, url_for, escape, request

app = Flask(__name__)

@app.route('/')
def index():
 if 'username' in session:
 return 'Logged in as %s' % escape(session['username'])
 return 'You are not logged in'

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 session['username'] = request.form['username']
 return redirect(url_for('index'))
 return '''
 <form method="post">
 <p><input type=text name=username>
 <p><input type=submit value=Login>
 </form>
 '''

@app.route('/logout')
def logout():
 # remove the username from the session if it's there
 session.pop('username', None)
 return redirect(url_for('index'))

set the secret key. keep this really secret:
app.secret_key = 'A0Zr98j/3yX R~XHH!jmN]LWX/,?RT'

The escape() mentioned here does escaping for you if you are
not using the template engine (as in this example).

How to generate good secret keys

The problem with random is that it’s hard to judge what is truly random. And
a secret key should be as random as possible. Your operating system
has ways to generate pretty random stuff based on a cryptographic
random generator which can be used to get such a key:

>>> import os
>>> os.urandom(24)
'\xfd{H\xe5<\x95\xf9\xe3\x96.5\xd1\x01O<!\xd5\xa2\xa0\x9fR"\xa1\xa8'

Just take that thing and copy/paste it into your code and you're done.

A note on cookie-based sessions: Flask will take the values you put into the
session object and serialize them into a cookie. If you are finding some
values do not persist across requests, cookies are indeed enabled, and you are
not getting a clear error message, check the size of the cookie in your page
responses compared to the size supported by web browsers.

Besides the default client-side based sessions, if you want to handle
sessions on the server-side instead, there are several
Flask extensions that support this.

Message Flashing

Good applications and user interfaces are all about feedback. If the user
does not get enough feedback they will probably end up hating the
application. Flask provides a really simple way to give feedback to a
user with the flashing system. The flashing system basically makes it
possible to record a message at the end of a request and access it on the next
(and only the next) request. This is usually combined with a layout
template to expose the message.

To flash a message use the flash() method, to get hold of the
messages you can use get_flashed_messages() which is also
available in the templates. Check out the Message Flashing
for a full example.

Logging

New in version 0.3.

Sometimes you might be in a situation where you deal with data that
should be correct, but actually is not. For example you may have some client-side
code that sends an HTTP request to the server but it’s obviously
malformed. This might be caused by a user tampering with the data, or the
client code failing. Most of the time it’s okay to reply with 400 Bad
Request in that situation, but sometimes that won’t do and the code has
to continue working.

You may still want to log that something fishy happened. This is where
loggers come in handy. As of Flask 0.3 a logger is preconfigured for you
to use.

Here are some example log calls:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

The attached logger is a standard logging
Logger [https://docs.python.org/3/library/logging.html#logging.Logger], so head over to the official logging
documentation [https://docs.python.org/library/logging.html] for more
information.

Read more on Application Errors.

Hooking in WSGI Middlewares

If you want to add a WSGI middleware to your application you can wrap the
internal WSGI application. For example if you want to use one of the
middlewares from the Werkzeug package to work around bugs in lighttpd, you
can do it like this:

from werkzeug.contrib.fixers import LighttpdCGIRootFix
app.wsgi_app = LighttpdCGIRootFix(app.wsgi_app)

Using Flask Extensions

Extensions are packages that help you accomplish common tasks. For
example, Flask-SQLAlchemy provides SQLAlchemy support that makes it simple
and easy to use with Flask.

For more on Flask extensions, have a look at Flask Extensions.

Deploying to a Web Server

Ready to deploy your new Flask app? Go to Deployment Options.

Tutorial

You want to develop an application with Python and Flask? Here you have
the chance to learn by example. In this tutorial, we will create a simple
microblogging application. It only supports one user that can create
text-only entries and there are no feeds or comments, but it still
features everything you need to get started. We will use Flask and SQLite
as a database (which comes out of the box with Python) so there is nothing
else you need.

If you want the full source code in advance or for comparison, check out
the example source [https://github.com/pallets/flask/tree/master/examples/flaskr/].

	Introducing Flaskr

	Step 0: Creating The Folders

	Step 1: Database Schema

	Step 2: Application Setup Code

	Step 3: Installing flaskr as a Package

	Step 4: Database Connections

	Step 5: Creating The Database

	Step 6: The View Functions
	Show Entries

	Add New Entry

	Login and Logout

	Step 7: The Templates
	layout.html

	show_entries.html

	login.html

	Step 8: Adding Style

	Bonus: Testing the Application
	Adding tests to flaskr

	Running the tests

	Testing + setuptools

Introducing Flaskr

This tutorial will demonstrate a blogging application named Flaskr, but feel
free to choose your own less Web-2.0-ish name ;) Essentially, it will do the
following things:

	Let the user sign in and out with credentials specified in the
configuration. Only one user is supported.

	When the user is logged in, they can add new entries to the page
consisting of a text-only title and some HTML for the text. This HTML
is not sanitized because we trust the user here.

	The index page shows all entries so far in reverse chronological order
(newest on top) and the user can add new ones from there if logged in.

SQLite3 will be used directly for this application because it’s good enough
for an application of this size. For larger applications, however,
it makes a lot of sense to use SQLAlchemy [http://www.sqlalchemy.org/], as it handles database
connections in a more intelligent way, allowing you to target different
relational databases at once and more. You might also want to consider
one of the popular NoSQL databases if your data is more suited for those.

Here a screenshot of the final application:

[image: screenshot of the final application]
Continue with Step 0: Creating The Folders.

Step 0: Creating The Folders

Before getting started, you will need to create the folders needed for this
application:

/flaskr
 /flaskr
 /static
 /templates

The application will be installed and run as Python package. This is the
recommended way to install and run Flask applications. You will see exactly
how to run flaskr later on in this tutorial. For now go ahead and create
the applications directory structure. In the next few steps you will be
creating the database schema as well as the main module.

As a quick side note, the files inside of the static folder are
available to users of the application via HTTP. This is the place where CSS and
JavaScript files go. Inside the templates folder, Flask will look for
Jinja2 [http://jinja.pocoo.org/] templates. You will see examples of this later on.

For now you should continue with Step 1: Database Schema.

Step 1: Database Schema

In this step, you will create the database schema. Only a single table is
needed for this application and it will only support SQLite. All you need to do
is put the following contents into a file named schema.sql in the
flaskr/flaskr folder:

drop table if exists entries;
create table entries (
 id integer primary key autoincrement,
 title text not null,
 'text' text not null
);

This schema consists of a single table called entries. Each row in
this table has an id, a title, and a text. The id is an
automatically incrementing integer and a primary key, the other two are
strings that must not be null.

Continue with Step 2: Application Setup Code.

Step 2: Application Setup Code

Now that the schema is in place, you can create the application module,
flaskr.py. This file should be placed inside of the
flaskr/flaskr folder. The first several lines of code in the
application module are the needed import statements. After that there will be a
few lines of configuration code. For small applications like flaskr, it is
possible to drop the configuration directly into the module. However, a cleaner
solution is to create a separate .ini or .py file, load that, and
import the values from there.

Here are the import statements (in flaskr.py):

all the imports
import os
import sqlite3
from flask import Flask, request, session, g, redirect, url_for, abort, \
 render_template, flash

The next couple lines will create the actual application instance and
initialize it with the config from the same file in flaskr.py:

app = Flask(__name__) # create the application instance :)
app.config.from_object(__name__) # load config from this file , flaskr.py

Load default config and override config from an environment variable
app.config.update(dict(
 DATABASE=os.path.join(app.root_path, 'flaskr.db'),
 SECRET_KEY='development key',
 USERNAME='admin',
 PASSWORD='default'
))
app.config.from_envvar('FLASKR_SETTINGS', silent=True)

The Config object works similarly to a dictionary, so it can be
updated with new values.

Database Path

Operating systems know the concept of a current working directory for
each process. Unfortunately, you cannot depend on this in web
applications because you might have more than one application in the
same process.

For this reason the app.root_path attribute can be used to
get the path to the application. Together with the os.path module,
files can then easily be found. In this example, we place the
database right next to it.

For a real-world application, it’s recommended to use
Instance Folders instead.

Usually, it is a good idea to load a separate, environment-specific
configuration file. Flask allows you to import multiple configurations and it
will use the setting defined in the last import. This enables robust
configuration setups. from_envvar() can help achieve this.

app.config.from_envvar('FLASKR_SETTINGS', silent=True)

Simply define the environment variable FLASKR_SETTINGS that points to
a config file to be loaded. The silent switch just tells Flask to not complain
if no such environment key is set.

In addition to that, you can use the from_object()
method on the config object and provide it with an import name of a
module. Flask will then initialize the variable from that module. Note
that in all cases, only variable names that are uppercase are considered.

The SECRET_KEY is needed to keep the client-side sessions secure.
Choose that key wisely and as hard to guess and complex as possible.

Lastly, you will add a method that allows for easy connections to the
specified database. This can be used to open a connection on request and
also from the interactive Python shell or a script. This will come in
handy later. You can create a simple database connection through SQLite and
then tell it to use the sqlite3.Row [https://docs.python.org/3/library/sqlite3.html#sqlite3.Row] object to represent rows.
This allows the rows to be treated as if they were dictionaries instead of
tuples.

def connect_db():
 """Connects to the specific database."""
 rv = sqlite3.connect(app.config['DATABASE'])
 rv.row_factory = sqlite3.Row
 return rv

In the next section you will see how to run the application.

Continue with Step 3: Installing flaskr as a Package.

Step 3: Installing flaskr as a Package

Flask is now shipped with built-in support for Click [http://click.pocoo.org]. Click provides
Flask with enhanced and extensible command line utilities. Later in this
tutorial you will see exactly how to extend the flask command line
interface (CLI).

A useful pattern to manage a Flask application is to install your app
following the Python Packaging Guide [https://packaging.python.org]. Presently this involves
creating two new files; setup.py and MANIFEST.in in the
projects root directory. You also need to add an __init__.py
file to make the flaskr/flaskr directory a package. After these
changes, your code structure should be:

/flaskr
 /flaskr
 __init__.py
 /static
 /templates
 flaskr.py
 schema.sql
 setup.py
 MANIFEST.in

The content of the setup.py file for flaskr is:

from setuptools import setup

setup(
 name='flaskr',
 packages=['flaskr'],
 include_package_data=True,
 install_requires=[
 'flask',
],
)

When using setuptools, it is also necessary to specify any special files
that should be included in your package (in the MANIFEST.in).
In this case, the static and templates directories need to be included,
as well as the schema. Create the MANIFEST.in and add the
following lines:

graft flaskr/templates
graft flaskr/static
include flaskr/schema.sql

To simplify locating the application, add the following import statement
into this file, flaskr/__init__.py:

from .flaskr import app

This import statement brings the application instance into the top-level
of the application package. When it is time to run the application, the
Flask development server needs the location of the app instance. This
import statement simplifies the location process. Without it the export
statement a few steps below would need to be
export FLASK_APP=flaskr.flaskr.

At this point you should be able to install the application. As usual, it
is recommended to install your Flask application within a virtualenv [https://virtualenv.pypa.io].
With that said, go ahead and install the application with:

pip install --editable .

The above installation command assumes that it is run within the projects
root directory, flaskr/. The editable flag allows editing
source code without having to reinstall the Flask app each time you make
changes. The flaskr app is now installed in your virtualenv (see output
of pip freeze).

With that out of the way, you should be able to start up the application.
Do this with the following commands:

export FLASK_APP=flaskr
export FLASK_DEBUG=true
flask run

(In case you are on Windows you need to use set instead of export).
The FLASK_DEBUG flag enables or disables the interactive debugger.
Never leave debug mode activated in a production system, because it will
allow users to execute code on the server!

You will see a message telling you that server has started along with
the address at which you can access it.

When you head over to the server in your browser, you will get a 404 error
because we don’t have any views yet. That will be addressed a little later,
but first, you should get the database working.

Externally Visible Server

Want your server to be publicly available? Check out the
externally visible server section for more
information.

Continue with Step 4: Database Connections.

Step 4: Database Connections

You currently have a function for establishing a database connection with
connect_db, but by itself, it is not particularly useful. Creating and
closing database connections all the time is very inefficient, so you will
need to keep it around for longer. Because database connections
encapsulate a transaction, you will need to make sure that only one
request at a time uses the connection. An elegant way to do this is by
utilizing the application context.

Flask provides two contexts: the application context and the
request context. For the time being, all you have to know is that there
are special variables that use these. For instance, the
request variable is the request object associated with
the current request, whereas g is a general purpose
variable associated with the current application context. The tutorial
will cover some more details of this later on.

For the time being, all you have to know is that you can store information
safely on the g object.

So when do you put it on there? To do that you can make a helper
function. The first time the function is called, it will create a database
connection for the current context, and successive calls will return the
already established connection:

def get_db():
 """Opens a new database connection if there is none yet for the
 current application context.
 """
 if not hasattr(g, 'sqlite_db'):
 g.sqlite_db = connect_db()
 return g.sqlite_db

Now you know how to connect, but how can you properly disconnect? For
that, Flask provides us with the teardown_appcontext()
decorator. It’s executed every time the application context tears down:

@app.teardown_appcontext
def close_db(error):
 """Closes the database again at the end of the request."""
 if hasattr(g, 'sqlite_db'):
 g.sqlite_db.close()

Functions marked with teardown_appcontext() are called
every time the app context tears down. What does this mean?
Essentially, the app context is created before the request comes in and is
destroyed (torn down) whenever the request finishes. A teardown can
happen because of two reasons: either everything went well (the error
parameter will be None) or an exception happened, in which case the error
is passed to the teardown function.

Curious about what these contexts mean? Have a look at the
The Application Context documentation to learn more.

Continue to Step 5: Creating The Database.

Hint

Where do I put this code?

If you’ve been following along in this tutorial, you might be wondering
where to put the code from this step and the next. A logical place is to
group these module-level functions together, and put your new
get_db and close_db functions below your existing
connect_db function (following the tutorial line-by-line).

If you need a moment to find your bearings, take a look at how the example
source [https://github.com/pallets/flask/tree/master/examples/flaskr/] is organized. In Flask, you can put all of your application code
into a single Python module. You don’t have to, and if your app grows
larger, it’s a good idea not to.

Step 5: Creating The Database

As outlined earlier, Flaskr is a database powered application, and more
precisely, it is an application powered by a relational database system. Such
systems need a schema that tells them how to store that information.
Before starting the server for the first time, it’s important to create
that schema.

Such a schema can be created by piping the schema.sql file into the
sqlite3 command as follows:

sqlite3 /tmp/flaskr.db < schema.sql

The downside of this is that it requires the sqlite3 command to be
installed, which is not necessarily the case on every system. This also
requires that you provide the path to the database, which can introduce
errors. It’s a good idea to add a function that initializes the database
for you, to the application.

To do this, you can create a function and hook it into a flask
command that initializes the database. For now just take a look at the
code segment below. A good place to add this function, and command, is
just below the connect_db function in flaskr.py:

def init_db():
 db = get_db()
 with app.open_resource('schema.sql', mode='r') as f:
 db.cursor().executescript(f.read())
 db.commit()

@app.cli.command('initdb')
def initdb_command():
 """Initializes the database."""
 init_db()
 print('Initialized the database.')

The app.cli.command() decorator registers a new command with the
flask script. When the command executes, Flask will automatically
create an application context which is bound to the right application.
Within the function, you can then access flask.g and other things as
you might expect. When the script ends, the application context tears down
and the database connection is released.

You will want to keep an actual function around that initializes the database,
though, so that we can easily create databases in unit tests later on. (For
more information see Testing Flask Applications.)

The open_resource() method of the application object
is a convenient helper function that will open a resource that the
application provides. This function opens a file from the resource
location (the flaskr/flaskr folder) and allows you to read from it.
It is used in this example to execute a script on the database connection.

The connection object provided by SQLite can give you a cursor object.
On that cursor, there is a method to execute a complete script. Finally, you
only have to commit the changes. SQLite3 and other transactional
databases will not commit unless you explicitly tell it to.

Now, it is possible to create a database with the flask script:

flask initdb
Initialized the database.

Troubleshooting

If you get an exception later on stating that a table cannot be found, check
that you did execute the initdb command and that your table names are
correct (singular vs. plural, for example).

Continue with Step 6: The View Functions

Step 6: The View Functions

Now that the database connections are working, you can start writing the
view functions. You will need four of them:

Show Entries

This view shows all the entries stored in the database. It listens on the
root of the application and will select title and text from the database.
The one with the highest id (the newest entry) will be on top. The rows
returned from the cursor look a bit like dictionaries because we are using
the sqlite3.Row [https://docs.python.org/3/library/sqlite3.html#sqlite3.Row] row factory.

The view function will pass the entries to the show_entries.html
template and return the rendered one:

@app.route('/')
def show_entries():
 db = get_db()
 cur = db.execute('select title, text from entries order by id desc')
 entries = cur.fetchall()
 return render_template('show_entries.html', entries=entries)

Add New Entry

This view lets the user add new entries if they are logged in. This only
responds to POST requests; the actual form is shown on the
show_entries page. If everything worked out well, it will
flash() an information message to the next request and
redirect back to the show_entries page:

@app.route('/add', methods=['POST'])
def add_entry():
 if not session.get('logged_in'):
 abort(401)
 db = get_db()
 db.execute('insert into entries (title, text) values (?, ?)',
 [request.form['title'], request.form['text']])
 db.commit()
 flash('New entry was successfully posted')
 return redirect(url_for('show_entries'))

Note that this view checks that the user is logged in (that is, if the
logged_in key is present in the session and True).

Security Note

Be sure to use question marks when building SQL statements, as done in the
example above. Otherwise, your app will be vulnerable to SQL injection when
you use string formatting to build SQL statements.
See Using SQLite 3 with Flask for more.

Login and Logout

These functions are used to sign the user in and out. Login checks the
username and password against the ones from the configuration and sets the
logged_in key for the session. If the user logged in successfully, that
key is set to True, and the user is redirected back to the show_entries
page. In addition, a message is flashed that informs the user that he or
she was logged in successfully. If an error occurred, the template is
notified about that, and the user is asked again:

@app.route('/login', methods=['GET', 'POST'])
def login():
 error = None
 if request.method == 'POST':
 if request.form['username'] != app.config['USERNAME']:
 error = 'Invalid username'
 elif request.form['password'] != app.config['PASSWORD']:
 error = 'Invalid password'
 else:
 session['logged_in'] = True
 flash('You were logged in')
 return redirect(url_for('show_entries'))
 return render_template('login.html', error=error)

The logout function, on the other hand, removes that key from the session
again. There is a neat trick here: if you use the pop() [https://docs.python.org/3/library/stdtypes.html#dict.pop] method
of the dict and pass a second parameter to it (the default), the method
will delete the key from the dictionary if present or do nothing when that
key is not in there. This is helpful because now it is not necessary to
check if the user was logged in.

@app.route('/logout')
def logout():
 session.pop('logged_in', None)
 flash('You were logged out')
 return redirect(url_for('show_entries'))

Security Note

Passwords should never be stored in plain text in a production
system. This tutorial uses plain text passwords for simplicity. If you
plan to release a project based off this tutorial out into the world,
passwords should be both hashed and salted [https://blog.codinghorror.com/youre-probably-storing-passwords-incorrectly/] before being stored in a
database or file.

Fortunately, there are Flask extensions for the purpose of
hashing passwords and verifying passwords against hashes, so adding
this functionality is fairly straight forward. There are also
many general python libraries that can be used for hashing.

You can find a list of recommended Flask extensions
here [http://flask.pocoo.org/extensions/]

Continue with Step 7: The Templates.

Step 7: The Templates

Now it is time to start working on the templates. As you may have
noticed, if you make requests with the app running, you will get
an exception that Flask cannot find the templates. The templates
are using Jinja2 [http://jinja.pocoo.org/docs/templates] syntax and have autoescaping enabled by
default. This means that unless you mark a value in the code with
Markup or with the |safe filter in the template,
Jinja2 will ensure that special characters such as < or > are
escaped with their XML equivalents.

We are also using template inheritance which makes it possible to reuse
the layout of the website in all pages.

Put the following templates into the templates folder:

layout.html

This template contains the HTML skeleton, the header and a link to log in
(or log out if the user was already logged in). It also displays the
flashed messages if there are any. The {% block body %} block can be
replaced by a block of the same name (body) in a child template.

The session dict is available in the template as well and
you can use that to check if the user is logged in or not. Note that in
Jinja you can access missing attributes and items of objects / dicts which
makes the following code work, even if there is no 'logged_in' key in
the session:

<!doctype html>
<title>Flaskr</title>
<link rel=stylesheet type=text/css href="{{ url_for('static', filename='style.css') }}">
<div class=page>
 <h1>Flaskr</h1>
 <div class=metanav>
 {% if not session.logged_in %}
 log in
 {% else %}
 log out
 {% endif %}
 </div>
 {% for message in get_flashed_messages() %}
 <div class=flash>{{ message }}</div>
 {% endfor %}
 {% block body %}{% endblock %}
</div>

show_entries.html

This template extends the layout.html template from above to display the
messages. Note that the for loop iterates over the messages we passed
in with the render_template() function. Notice that the form is
configured to to submit to the add_entry view function and use POST as
HTTP method:

{% extends "layout.html" %}
{% block body %}
 {% if session.logged_in %}
 <form action="{{ url_for('add_entry') }}" method=post class=add-entry>
 <dl>
 <dt>Title:
 <dd><input type=text size=30 name=title>
 <dt>Text:
 <dd><textarea name=text rows=5 cols=40></textarea>
 <dd><input type=submit value=Share>
 </dl>
 </form>
 {% endif %}
 <ul class=entries>
 {% for entry in entries %}
 <h2>{{ entry.title }}</h2>{{ entry.text|safe }}
 {% else %}
 Unbelievable. No entries here so far
 {% endfor %}

{% endblock %}

login.html

This is the login template, which basically just displays a form to allow
the user to login:

{% extends "layout.html" %}
{% block body %}
 <h2>Login</h2>
 {% if error %}<p class=error>Error: {{ error }}{% endif %}
 <form action="{{ url_for('login') }}" method=post>
 <dl>
 <dt>Username:
 <dd><input type=text name=username>
 <dt>Password:
 <dd><input type=password name=password>
 <dd><input type=submit value=Login>
 </dl>
 </form>
{% endblock %}

Continue with Step 8: Adding Style.

Step 8: Adding Style

Now that everything else works, it’s time to add some style to the
application. Just create a stylesheet called style.css in the
static folder:

body { font-family: sans-serif; background: #eee; }
a, h1, h2 { color: #377ba8; }
h1, h2 { font-family: 'Georgia', serif; margin: 0; }
h1 { border-bottom: 2px solid #eee; }
h2 { font-size: 1.2em; }

.page { margin: 2em auto; width: 35em; border: 5px solid #ccc;
 padding: 0.8em; background: white; }
.entries { list-style: none; margin: 0; padding: 0; }
.entries li { margin: 0.8em 1.2em; }
.entries li h2 { margin-left: -1em; }
.add-entry { font-size: 0.9em; border-bottom: 1px solid #ccc; }
.add-entry dl { font-weight: bold; }
.metanav { text-align: right; font-size: 0.8em; padding: 0.3em;
 margin-bottom: 1em; background: #fafafa; }
.flash { background: #cee5F5; padding: 0.5em;
 border: 1px solid #aacbe2; }
.error { background: #f0d6d6; padding: 0.5em; }

Continue with Bonus: Testing the Application.

Bonus: Testing the Application

Now that you have finished the application and everything works as
expected, it’s probably not a bad idea to add automated tests to simplify
modifications in the future. The application above is used as a basic
example of how to perform unit testing in the Testing Flask Applications section of the
documentation. Go there to see how easy it is to test Flask applications.

Adding tests to flaskr

Assuming you have seen the Testing Flask Applications section and have either written
your own tests for flaskr or have followed along with the examples
provided, you might be wondering about ways to organize the project.

One possible and recommended project structure is:

flaskr/
 flaskr/
 __init__.py
 static/
 templates/
 tests/
 test_flaskr.py
 setup.py
 MANIFEST.in

For now go ahead a create the tests/ directory as well as the
test_flaskr.py file.

Running the tests

At this point you can run the tests. Here pytest will be used.

Note

Make sure that pytest is installed in the same virtualenv
as flaskr. Otherwise pytest test will not be able to import the
required components to test the application:

pip install -e .
pip install pytest

Run and watch the tests pass, within the top-level flaskr/
directory as:

py.test

Testing + setuptools

One way to handle testing is to integrate it with setuptools. Here
that requires adding a couple of lines to the setup.py file and
creating a new file setup.cfg. One benefit of running the tests
this way is that you do not have to install pytest. Go ahead and
update the setup.py file to contain:

from setuptools import setup

setup(
 name='flaskr',
 packages=['flaskr'],
 include_package_data=True,
 install_requires=[
 'flask',
],
 setup_requires=[
 'pytest-runner',
],
 tests_require=[
 'pytest',
],
)

Now create setup.cfg in the project root (alongside
setup.py):

[aliases]
test=pytest

Now you can run:

python setup.py test

This calls on the alias created in setup.cfg which in turn runs
pytest via pytest-runner, as the setup.py script has
been called. (Recall the setup_requires argument in setup.py)
Following the standard rules of test-discovery your tests will be
found, run, and hopefully pass.

This is one possible way to run and manage testing. Here pytest is
used, but there are other options such as nose. Integrating testing
with setuptools is convenient because it is not necessary to actually
download pytest or any other testing framework one might use.

Templates

Flask leverages Jinja2 as template engine. You are obviously free to use
a different template engine, but you still have to install Jinja2 to run
Flask itself. This requirement is necessary to enable rich extensions.
An extension can depend on Jinja2 being present.

This section only gives a very quick introduction into how Jinja2
is integrated into Flask. If you want information on the template
engine’s syntax itself, head over to the official Jinja2 Template
Documentation [http://jinja.pocoo.org/docs/templates] for
more information.

Jinja Setup

Unless customized, Jinja2 is configured by Flask as follows:

	autoescaping is enabled for all templates ending in .html,
.htm, .xml as well as .xhtml when using
render_template().

	autoescaping is enabled for all strings when using
render_template_string().

	a template has the ability to opt in/out autoescaping with the
{% autoescape %} tag.

	Flask inserts a couple of global functions and helpers into the
Jinja2 context, additionally to the values that are present by
default.

Standard Context

The following global variables are available within Jinja2 templates
by default:

	
config

	The current configuration object (flask.config)

New in version 0.6.

Changed in version 0.10: This is now always available, even in imported templates.

	
request

	The current request object (flask.request). This variable is
unavailable if the template was rendered without an active request
context.

	
session

	The current session object (flask.session). This variable
is unavailable if the template was rendered without an active request
context.

	
g

	The request-bound object for global variables (flask.g). This
variable is unavailable if the template was rendered without an active
request context.

	
url_for()

	The flask.url_for() function.

	
get_flashed_messages()

	The flask.get_flashed_messages() function.

The Jinja Context Behavior

These variables are added to the context of variables, they are not
global variables. The difference is that by default these will not
show up in the context of imported templates. This is partially caused
by performance considerations, partially to keep things explicit.

What does this mean for you? If you have a macro you want to import,
that needs to access the request object you have two possibilities:

	you explicitly pass the request to the macro as parameter, or
the attribute of the request object you are interested in.

	you import the macro “with context”.

Importing with context looks like this:

{% from '_helpers.html' import my_macro with context %}

Standard Filters

These filters are available in Jinja2 additionally to the filters provided
by Jinja2 itself:

	
tojson()

	This function converts the given object into JSON representation. This
is for example very helpful if you try to generate JavaScript on the
fly.

Note that inside script tags no escaping must take place, so make
sure to disable escaping with |safe before Flask 0.10 if you intend
to use it inside script tags:

<script type=text/javascript>
 doSomethingWith({{ user.username|tojson|safe }});
</script>

Controlling Autoescaping

Autoescaping is the concept of automatically escaping special characters
for you. Special characters in the sense of HTML (or XML, and thus XHTML)
are &, >, <, " as well as '. Because these characters
carry specific meanings in documents on their own you have to replace them
by so called “entities” if you want to use them for text. Not doing so
would not only cause user frustration by the inability to use these
characters in text, but can also lead to security problems. (see
Cross-Site Scripting (XSS))

Sometimes however you will need to disable autoescaping in templates.
This can be the case if you want to explicitly inject HTML into pages, for
example if they come from a system that generates secure HTML like a
markdown to HTML converter.

There are three ways to accomplish that:

	In the Python code, wrap the HTML string in a Markup
object before passing it to the template. This is in general the
recommended way.

	Inside the template, use the |safe filter to explicitly mark a
string as safe HTML ({{ myvariable|safe }})

	Temporarily disable the autoescape system altogether.

To disable the autoescape system in templates, you can use the {%
autoescape %} block:

{% autoescape false %}
 <p>autoescaping is disabled here
 <p>{{ will_not_be_escaped }}
{% endautoescape %}

Whenever you do this, please be very cautious about the variables you are
using in this block.

Registering Filters

If you want to register your own filters in Jinja2 you have two ways to do
that. You can either put them by hand into the
jinja_env of the application or use the
template_filter() decorator.

The two following examples work the same and both reverse an object:

@app.template_filter('reverse')
def reverse_filter(s):
 return s[::-1]

def reverse_filter(s):
 return s[::-1]
app.jinja_env.filters['reverse'] = reverse_filter

In case of the decorator the argument is optional if you want to use the
function name as name of the filter. Once registered, you can use the filter
in your templates in the same way as Jinja2’s builtin filters, for example if
you have a Python list in context called mylist:

{% for x in mylist | reverse %}
{% endfor %}

Context Processors

To inject new variables automatically into the context of a template,
context processors exist in Flask. Context processors run before the
template is rendered and have the ability to inject new values into the
template context. A context processor is a function that returns a
dictionary. The keys and values of this dictionary are then merged with
the template context, for all templates in the app:

@app.context_processor
def inject_user():
 return dict(user=g.user)

The context processor above makes a variable called user available in
the template with the value of g.user. This example is not very
interesting because g is available in templates anyways, but it gives an
idea how this works.

Variables are not limited to values; a context processor can also make
functions available to templates (since Python allows passing around
functions):

@app.context_processor
def utility_processor():
 def format_price(amount, currency=u'€'):
 return u'{0:.2f}{1}'.format(amount, currency)
 return dict(format_price=format_price)

The context processor above makes the format_price function available to all
templates:

{{ format_price(0.33) }}

You could also build format_price as a template filter (see
Registering Filters), but this demonstrates how to pass functions in a
context processor.

Testing Flask Applications

Something that is untested is broken.

The origin of this quote is unknown and while it is not entirely correct, it is also
not far from the truth. Untested applications make it hard to
improve existing code and developers of untested applications tend to
become pretty paranoid. If an application has automated tests, you can
safely make changes and instantly know if anything breaks.

Flask provides a way to test your application by exposing the Werkzeug
test Client [http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client] and handling the context locals for you.
You can then use that with your favourite testing solution. In this documentation
we will use the unittest [https://docs.python.org/3/library/unittest.html#module-unittest] package that comes pre-installed with Python.

The Application

First, we need an application to test; we will use the application from
the Tutorial. If you don’t have that application yet, get the
sources from the examples [https://github.com/pallets/flask/tree/master/examples/flaskr/].

The Testing Skeleton

In order to test the application, we add a second module
(flaskr_tests.py) and create a unittest skeleton there:

import os
import flaskr
import unittest
import tempfile

class FlaskrTestCase(unittest.TestCase):

 def setUp(self):
 self.db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp()
 flaskr.app.testing = True
 self.app = flaskr.app.test_client()
 with flaskr.app.app_context():
 flaskr.init_db()

 def tearDown(self):
 os.close(self.db_fd)
 os.unlink(flaskr.app.config['DATABASE'])

if __name__ == '__main__':
 unittest.main()

The code in the setUp() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp] method creates a new test
client and initializes a new database. This function is called before
each individual test function is run. To delete the database after the
test, we close the file and remove it from the filesystem in the
tearDown() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown] method. Additionally during setup the
TESTING config flag is activated. What it does is disable the error
catching during request handling so that you get better error reports when
performing test requests against the application.

This test client will give us a simple interface to the application. We can
trigger test requests to the application, and the client will also keep track
of cookies for us.

Because SQLite3 is filesystem-based we can easily use the tempfile module
to create a temporary database and initialize it. The
mkstemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp] function does two things for us: it returns a
low-level file handle and a random file name, the latter we use as
database name. We just have to keep the db_fd around so that we can use
the os.close() [https://docs.python.org/3/library/os.html#os.close] function to close the file.

If we now run the test suite, we should see the following output:

$ python flaskr_tests.py

--
Ran 0 tests in 0.000s

OK

Even though it did not run any actual tests, we already know that our flaskr
application is syntactically valid, otherwise the import would have died
with an exception.

The First Test

Now it’s time to start testing the functionality of the application.
Let’s check that the application shows “No entries here so far” if we
access the root of the application (/). To do this, we add a new
test method to our class, like this:

class FlaskrTestCase(unittest.TestCase):

 def setUp(self):
 self.db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp()
 flaskr.app.testing = True
 self.app = flaskr.app.test_client()
 with flaskr.app.app_context():
 flaskr.init_db()

 def tearDown(self):
 os.close(self.db_fd)
 os.unlink(flaskr.app.config['DATABASE'])

 def test_empty_db(self):
 rv = self.app.get('/')
 assert b'No entries here so far' in rv.data

Notice that our test functions begin with the word test; this allows
unittest [https://docs.python.org/3/library/unittest.html#module-unittest] to automatically identify the method as a test to run.

By using self.app.get we can send an HTTP GET request to the application with
the given path. The return value will be a response_class object.
We can now use the data [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse.data] attribute to inspect
the return value (as string) from the application. In this case, we ensure that
'No entries here so far' is part of the output.

Run it again and you should see one passing test:

$ python flaskr_tests.py
.
--
Ran 1 test in 0.034s

OK

Logging In and Out

The majority of the functionality of our application is only available for
the administrative user, so we need a way to log our test client in and out
of the application. To do this, we fire some requests to the login and logout
pages with the required form data (username and password). And because the
login and logout pages redirect, we tell the client to follow_redirects.

Add the following two methods to your FlaskrTestCase class:

def login(self, username, password):
 return self.app.post('/login', data=dict(
 username=username,
 password=password
), follow_redirects=True)

def logout(self):
 return self.app.get('/logout', follow_redirects=True)

Now we can easily test that logging in and out works and that it fails with
invalid credentials. Add this new test to the class:

def test_login_logout(self):
 rv = self.login('admin', 'default')
 assert b'You were logged in' in rv.data
 rv = self.logout()
 assert b'You were logged out' in rv.data
 rv = self.login('adminx', 'default')
 assert b'Invalid username' in rv.data
 rv = self.login('admin', 'defaultx')
 assert b'Invalid password' in rv.data

Test Adding Messages

We should also test that adding messages works. Add a new test method
like this:

def test_messages(self):
 self.login('admin', 'default')
 rv = self.app.post('/add', data=dict(
 title='<Hello>',
 text='HTML allowed here'
), follow_redirects=True)
 assert b'No entries here so far' not in rv.data
 assert b'<Hello>' in rv.data
 assert b'HTML allowed here' in rv.data

Here we check that HTML is allowed in the text but not in the title,
which is the intended behavior.

Running that should now give us three passing tests:

$ python flaskr_tests.py
...
--
Ran 3 tests in 0.332s

OK

For more complex tests with headers and status codes, check out the
MiniTwit Example [https://github.com/pallets/flask/tree/master/examples/minitwit/] from the sources which contains a larger test
suite.

Other Testing Tricks

Besides using the test client as shown above, there is also the
test_request_context() method that can be used
in combination with the with statement to activate a request context
temporarily. With this you can access the request,
g and session objects like in view
functions. Here is a full example that demonstrates this approach:

import flask

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
 assert flask.request.path == '/'
 assert flask.request.args['name'] == 'Peter'

All the other objects that are context bound can be used in the same
way.

If you want to test your application with different configurations and
there does not seem to be a good way to do that, consider switching to
application factories (see Application Factories).

Note however that if you are using a test request context, the
before_request() and after_request()
functions are not called automatically. However
teardown_request() functions are indeed executed when
the test request context leaves the with block. If you do want the
before_request() functions to be called as well, you
need to call preprocess_request() yourself:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
 app.preprocess_request()
 ...

This can be necessary to open database connections or something similar
depending on how your application was designed.

If you want to call the after_request() functions you
need to call into process_response() which however
requires that you pass it a response object:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
 resp = Response('...')
 resp = app.process_response(resp)
 ...

This in general is less useful because at that point you can directly
start using the test client.

Faking Resources and Context

New in version 0.10.

A very common pattern is to store user authorization information and
database connections on the application context or the flask.g
object. The general pattern for this is to put the object on there on
first usage and then to remove it on a teardown. Imagine for instance
this code to get the current user:

def get_user():
 user = getattr(g, 'user', None)
 if user is None:
 user = fetch_current_user_from_database()
 g.user = user
 return user

For a test it would be nice to override this user from the outside without
having to change some code. This can be accomplished with
hooking the flask.appcontext_pushed signal:

from contextlib import contextmanager
from flask import appcontext_pushed, g

@contextmanager
def user_set(app, user):
 def handler(sender, **kwargs):
 g.user = user
 with appcontext_pushed.connected_to(handler, app):
 yield

And then to use it:

from flask import json, jsonify

@app.route('/users/me')
def users_me():
 return jsonify(username=g.user.username)

with user_set(app, my_user):
 with app.test_client() as c:
 resp = c.get('/users/me')
 data = json.loads(resp.data)
 self.assert_equal(data['username'], my_user.username)

Keeping the Context Around

New in version 0.4.

Sometimes it is helpful to trigger a regular request but still keep the
context around for a little longer so that additional introspection can
happen. With Flask 0.4 this is possible by using the
test_client() with a with block:

app = flask.Flask(__name__)

with app.test_client() as c:
 rv = c.get('/?tequila=42')
 assert request.args['tequila'] == '42'

If you were to use just the test_client() without
the with block, the assert would fail with an error because request
is no longer available (because you are trying to use it outside of the actual request).

Accessing and Modifying Sessions

New in version 0.8.

Sometimes it can be very helpful to access or modify the sessions from the
test client. Generally there are two ways for this. If you just want to
ensure that a session has certain keys set to certain values you can just
keep the context around and access flask.session:

with app.test_client() as c:
 rv = c.get('/')
 assert flask.session['foo'] == 42

This however does not make it possible to also modify the session or to
access the session before a request was fired. Starting with Flask 0.8 we
provide a so called “session transaction” which simulates the appropriate
calls to open a session in the context of the test client and to modify
it. At the end of the transaction the session is stored. This works
independently of the session backend used:

with app.test_client() as c:
 with c.session_transaction() as sess:
 sess['a_key'] = 'a value'

 # once this is reached the session was stored

Note that in this case you have to use the sess object instead of the
flask.session proxy. The object however itself will provide the
same interface.

Application Errors

New in version 0.3.

Applications fail, servers fail. Sooner or later you will see an exception
in production. Even if your code is 100% correct, you will still see
exceptions from time to time. Why? Because everything else involved will
fail. Here are some situations where perfectly fine code can lead to server
errors:

	the client terminated the request early and the application was still
reading from the incoming data

	the database server was overloaded and could not handle the query

	a filesystem is full

	a harddrive crashed

	a backend server overloaded

	a programming error in a library you are using

	network connection of the server to another system failed

And that’s just a small sample of issues you could be facing. So how do we
deal with that sort of problem? By default if your application runs in
production mode, Flask will display a very simple page for you and log the
exception to the logger.

But there is more you can do, and we will cover some better setups to deal
with errors.

Error Logging Tools

Sending error mails, even if just for critical ones, can become
overwhelming if enough users are hitting the error and log files are
typically never looked at. This is why we recommend using Sentry [http://www.getsentry.com/] for dealing with application errors. It’s
available as an Open Source project on GitHub [https://github.com/getsentry/sentry] and is also available as a hosted version [https://getsentry.com/signup/] which you can try for free. Sentry
aggregates duplicate errors, captures the full stack trace and local
variables for debugging, and sends you mails based on new errors or
frequency thresholds.

To use Sentry you need to install the raven client:

$ pip install raven

And then add this to your Flask app:

from raven.contrib.flask import Sentry
sentry = Sentry(app, dsn='YOUR_DSN_HERE')

Or if you are using factories you can also init it later:

from raven.contrib.flask import Sentry
sentry = Sentry(dsn='YOUR_DSN_HERE')

def create_app():
 app = Flask(__name__)
 sentry.init_app(app)
 ...
 return app

The YOUR_DSN_HERE value needs to be replaced with the DSN value you get
from your Sentry installation.

Afterwards failures are automatically reported to Sentry and from there
you can receive error notifications.

Error handlers

You might want to show custom error pages to the user when an error occurs.
This can be done by registering error handlers.

Error handlers are normal Pluggable Views but instead of being registered for
routes, they are registered for exceptions that are raised while trying to
do something else.

Registering

Register error handlers using errorhandler() or
register_error_handler():

@app.errorhandler(werkzeug.exceptions.BadRequest)
def handle_bad_request(e):
 return 'bad request!'

app.register_error_handler(400, lambda e: 'bad request!')

Those two ways are equivalent, but the first one is more clear and leaves
you with a function to call on your whim (and in tests). Note that
werkzeug.exceptions.HTTPException [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException] subclasses like
BadRequest [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest] from the example and their HTTP codes
are interchangeable when handed to the registration methods or decorator
(BadRequest.code == 400).

You are however not limited to HTTPException [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException]
or HTTP status codes but can register a handler for every exception class you
like.

Changed in version 0.11: Errorhandlers are now prioritized by specificity of the exception classes
they are registered for instead of the order they are registered in.

Handling

Once an exception instance is raised, its class hierarchy is traversed,
and searched for in the exception classes for which handlers are registered.
The most specific handler is selected.

E.g. if an instance of ConnectionRefusedError [https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError] is raised, and a handler
is registered for ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] and ConnectionRefusedError [https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError],
the more specific ConnectionRefusedError [https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError] handler is called on the
exception instance, and its response is shown to the user.

Error Mails

If the application runs in production mode (which it will do on your
server) you might not see any log messages. The reason for that is that
Flask by default will just report to the WSGI error stream or stderr
(depending on what’s available). Where this ends up is sometimes hard to
find. Often it’s in your webserver’s log files.

I can pretty much promise you however that if you only use a logfile for
the application errors you will never look at it except for debugging an
issue when a user reported it for you. What you probably want instead is
a mail the second the exception happened. Then you get an alert and you
can do something about it.

Flask uses the Python builtin logging system, and it can actually send
you mails for errors which is probably what you want. Here is how you can
configure the Flask logger to send you mails for exceptions:

ADMINS = ['yourname@example.com']
if not app.debug:
 import logging
 from logging.handlers import SMTPHandler
 mail_handler = SMTPHandler('127.0.0.1',
 'server-error@example.com',
 ADMINS, 'YourApplication Failed')
 mail_handler.setLevel(logging.ERROR)
 app.logger.addHandler(mail_handler)

So what just happened? We created a new
SMTPHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SMTPHandler] that will send mails with the mail
server listening on 127.0.0.1 to all the ADMINS from the address
server-error@example.com with the subject “YourApplication Failed”. If
your mail server requires credentials, these can also be provided. For
that check out the documentation for the
SMTPHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SMTPHandler].

We also tell the handler to only send errors and more critical messages.
Because we certainly don’t want to get a mail for warnings or other
useless logs that might happen during request handling.

Before you run that in production, please also look at Controlling the Log Format to
put more information into that error mail. That will save you from a lot
of frustration.

Logging to a File

Even if you get mails, you probably also want to log warnings. It’s a
good idea to keep as much information around that might be required to
debug a problem. By default as of Flask 0.11, errors are logged to your
webserver’s log automatically. Warnings however are not. Please note
that Flask itself will not issue any warnings in the core system, so it’s
your responsibility to warn in the code if something seems odd.

There are a couple of handlers provided by the logging system out of the
box but not all of them are useful for basic error logging. The most
interesting are probably the following:

	FileHandler [https://docs.python.org/3/library/logging.handlers.html#logging.FileHandler] - logs messages to a file on the
filesystem.

	RotatingFileHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.RotatingFileHandler] - logs messages to a file
on the filesystem and will rotate after a certain number of messages.

	NTEventLogHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.NTEventLogHandler] - will log to the system
event log of a Windows system. If you are deploying on a Windows box,
this is what you want to use.

	SysLogHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler] - sends logs to a UNIX
syslog.

Once you picked your log handler, do like you did with the SMTP handler
above, just make sure to use a lower setting (I would recommend
WARNING):

if not app.debug:
 import logging
 from themodule import TheHandlerYouWant
 file_handler = TheHandlerYouWant(...)
 file_handler.setLevel(logging.WARNING)
 app.logger.addHandler(file_handler)

Controlling the Log Format

By default a handler will only write the message string into a file or
send you that message as mail. A log record stores more information,
and it makes a lot of sense to configure your logger to also contain that
information so that you have a better idea of why that error happened, and
more importantly, where it did.

A formatter can be instantiated with a format string. Note that
tracebacks are appended to the log entry automatically. You don’t have to
do that in the log formatter format string.

Here are some example setups:

Email

from logging import Formatter
mail_handler.setFormatter(Formatter('''
Message type: %(levelname)s
Location: %(pathname)s:%(lineno)d
Module: %(module)s
Function: %(funcName)s
Time: %(asctime)s

Message:

%(message)s
'''))

File logging

from logging import Formatter
file_handler.setFormatter(Formatter(
 '%(asctime)s %(levelname)s: %(message)s '
 '[in %(pathname)s:%(lineno)d]'
))

Complex Log Formatting

Here is a list of useful formatting variables for the format string. Note
that this list is not complete, consult the official documentation of the
logging [https://docs.python.org/3/library/logging.html#module-logging] package for a full list.

	Format
	Description

	%(levelname)s
	Text logging level for the message
('DEBUG', 'INFO', 'WARNING',
'ERROR', 'CRITICAL').

	%(pathname)s
	Full pathname of the source file where the
logging call was issued (if available).

	%(filename)s
	Filename portion of pathname.

	%(module)s
	Module (name portion of filename).

	%(funcName)s
	Name of function containing the logging call.

	%(lineno)d
	Source line number where the logging call was
issued (if available).

	%(asctime)s
	Human-readable time when the
LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord] was created.
By default this is of the form
"2003-07-08 16:49:45,896" (the numbers after
the comma are millisecond portion of the time).
This can be changed by subclassing the formatter
and overriding the
formatTime() [https://docs.python.org/3/library/logging.html#logging.Formatter.formatTime] method.

	%(message)s
	The logged message, computed as msg % args

If you want to further customize the formatting, you can subclass the
formatter. The formatter has three interesting methods:

	format() [https://docs.python.org/3/library/logging.html#logging.Formatter.format]:

	handles the actual formatting. It is passed a
LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord] object and has to return the formatted
string.

	formatTime() [https://docs.python.org/3/library/logging.html#logging.Formatter.formatTime]:

	called for asctime formatting. If you want a different time format
you can override this method.

	formatException() [https://docs.python.org/3/library/logging.html#logging.Formatter.formatException]

	called for exception formatting. It is passed an exc_info
tuple and has to return a string. The default is usually fine, you
don’t have to override it.

For more information, head over to the official documentation.

Other Libraries

So far we only configured the logger your application created itself.
Other libraries might log themselves as well. For example, SQLAlchemy uses
logging heavily in its core. While there is a method to configure all
loggers at once in the logging [https://docs.python.org/3/library/logging.html#module-logging] package, I would not recommend using
it. There might be a situation in which you want to have multiple
separate applications running side by side in the same Python interpreter
and then it becomes impossible to have different logging setups for those.

Instead, I would recommend figuring out which loggers you are interested
in, getting the loggers with the getLogger() [https://docs.python.org/3/library/logging.html#logging.getLogger] function and
iterating over them to attach handlers:

from logging import getLogger
loggers = [app.logger, getLogger('sqlalchemy'),
 getLogger('otherlibrary')]
for logger in loggers:
 logger.addHandler(mail_handler)
 logger.addHandler(file_handler)

Debugging Application Errors

For production applications, configure your application with logging and
notifications as described in Application Errors. This section provides
pointers when debugging deployment configuration and digging deeper with a
full-featured Python debugger.

When in Doubt, Run Manually

Having problems getting your application configured for production? If you
have shell access to your host, verify that you can run your application
manually from the shell in the deployment environment. Be sure to run under
the same user account as the configured deployment to troubleshoot permission
issues. You can use Flask’s builtin development server with debug=True on
your production host, which is helpful in catching configuration issues, but
be sure to do this temporarily in a controlled environment. Do not run in
production with debug=True.

Working with Debuggers

To dig deeper, possibly to trace code execution, Flask provides a debugger out
of the box (see Debug Mode). If you would like to use another Python
debugger, note that debuggers interfere with each other. You have to set some
options in order to use your favorite debugger:

	debug - whether to enable debug mode and catch exceptions

	use_debugger - whether to use the internal Flask debugger

	use_reloader - whether to reload and fork the process on exception

debug must be True (i.e., exceptions must be caught) in order for the other
two options to have any value.

If you’re using Aptana/Eclipse for debugging you’ll need to set both
use_debugger and use_reloader to False.

A possible useful pattern for configuration is to set the following in your
config.yaml (change the block as appropriate for your application, of course):

FLASK:
 DEBUG: True
 DEBUG_WITH_APTANA: True

Then in your application’s entry-point (main.py), you could have something like:

if __name__ == "__main__":
 # To allow aptana to receive errors, set use_debugger=False
 app = create_app(config="config.yaml")

 if app.debug: use_debugger = True
 try:
 # Disable Flask's debugger if external debugger is requested
 use_debugger = not(app.config.get('DEBUG_WITH_APTANA'))
 except:
 pass
 app.run(use_debugger=use_debugger, debug=app.debug,
 use_reloader=use_debugger, host='0.0.0.0')

Configuration Handling

New in version 0.3.

Applications need some kind of configuration. There are different settings
you might want to change depending on the application environment like
toggling the debug mode, setting the secret key, and other such
environment-specific things.

The way Flask is designed usually requires the configuration to be
available when the application starts up. You can hardcode the
configuration in the code, which for many small applications is not
actually that bad, but there are better ways.

Independent of how you load your config, there is a config object
available which holds the loaded configuration values:
The config attribute of the Flask
object. This is the place where Flask itself puts certain configuration
values and also where extensions can put their configuration values. But
this is also where you can have your own configuration.

Configuration Basics

The config is actually a subclass of a dictionary and
can be modified just like any dictionary:

app = Flask(__name__)
app.config['DEBUG'] = True

Certain configuration values are also forwarded to the
Flask object so you can read and write them from there:

app.debug = True

To update multiple keys at once you can use the dict.update() [https://docs.python.org/3/library/stdtypes.html#dict.update]
method:

app.config.update(
 DEBUG=True,
 SECRET_KEY='...'
)

Builtin Configuration Values

The following configuration values are used internally by Flask:

	DEBUG
	enable/disable debug mode

	TESTING
	enable/disable testing mode

	PROPAGATE_EXCEPTIONS
	explicitly enable or disable the
propagation of exceptions. If not set or
explicitly set to None this is
implicitly true if either TESTING or
DEBUG is true.

	PRESERVE_CONTEXT_ON_EXCEPTION
	By default if the application is in
debug mode the request context is not
popped on exceptions to enable debuggers
to introspect the data. This can be
disabled by this key. You can also use
this setting to force-enable it for non
debug execution which might be useful to
debug production applications (but also
very risky).

	SECRET_KEY
	the secret key

	SESSION_COOKIE_NAME
	the name of the session cookie

	SESSION_COOKIE_DOMAIN
	the domain for the session cookie. If
this is not set, the cookie will be
valid for all subdomains of
SERVER_NAME.

	SESSION_COOKIE_PATH
	the path for the session cookie. If
this is not set the cookie will be valid
for all of APPLICATION_ROOT or if
that is not set for '/'.

	SESSION_COOKIE_HTTPONLY
	controls if the cookie should be set
with the httponly flag. Defaults to
True.

	SESSION_COOKIE_SECURE
	controls if the cookie should be set
with the secure flag. Defaults to
False.

	PERMANENT_SESSION_LIFETIME
	the lifetime of a permanent session as
datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] object.
Starting with Flask 0.8 this can also be
an integer representing seconds.

	SESSION_REFRESH_EACH_REQUEST
	this flag controls how permanent
sessions are refreshed. If set to True
(which is the default) then the cookie
is refreshed each request which
automatically bumps the lifetime. If
set to False a set-cookie header is
only sent if the session is modified.
Non permanent sessions are not affected
by this.

	USE_X_SENDFILE
	enable/disable x-sendfile

	LOGGER_NAME
	the name of the logger

	LOGGER_HANDLER_POLICY
	the policy of the default logging
handler. The default is 'always'
which means that the default logging
handler is always active. 'debug'
will only activate logging in debug
mode, 'production' will only log in
production and 'never' disables it
entirely.

	SERVER_NAME
	the name and port number of the server.
Required for subdomain support (e.g.:
'myapp.dev:5000') Note that
localhost does not support subdomains so
setting this to “localhost” does not
help. Setting a SERVER_NAME also
by default enables URL generation
without a request context but with an
application context.

	APPLICATION_ROOT
	If the application does not occupy
a whole domain or subdomain this can
be set to the path where the application
is configured to live. This is for
session cookie as path value. If
domains are used, this should be
None.

	MAX_CONTENT_LENGTH
	If set to a value in bytes, Flask will
reject incoming requests with a
content length greater than this by
returning a 413 status code.

	SEND_FILE_MAX_AGE_DEFAULT
	Default cache control max age to use with
send_static_file() (the
default static file handler) and
send_file(), as
datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] or as seconds.
Override this value on a per-file
basis using the
get_send_file_max_age()
hook on Flask or
Blueprint,
respectively. Defaults to 43200 (12 hours).

	TRAP_HTTP_EXCEPTIONS
	If this is set to True Flask will
not execute the error handlers of HTTP
exceptions but instead treat the
exception like any other and bubble it
through the exception stack. This is
helpful for hairy debugging situations
where you have to find out where an HTTP
exception is coming from.

	TRAP_BAD_REQUEST_ERRORS
	Werkzeug’s internal data structures that
deal with request specific data will
raise special key errors that are also
bad request exceptions. Likewise many
operations can implicitly fail with a
BadRequest exception for consistency.
Since it’s nice for debugging to know
why exactly it failed this flag can be
used to debug those situations. If this
config is set to True you will get
a regular traceback instead.

	PREFERRED_URL_SCHEME
	The URL scheme that should be used for
URL generation if no URL scheme is
available. This defaults to http.

	JSON_AS_ASCII
	By default Flask serialize object to
ascii-encoded JSON. If this is set to
False Flask will not encode to ASCII
and output strings as-is and return
unicode strings. jsonify will
automatically encode it in utf-8
then for transport for instance.

	JSON_SORT_KEYS
	By default Flask will serialize JSON
objects in a way that the keys are
ordered. This is done in order to
ensure that independent of the hash seed
of the dictionary the return value will
be consistent to not trash external HTTP
caches. You can override the default
behavior by changing this variable.
This is not recommended but might give
you a performance improvement on the
cost of cacheability.

	JSONIFY_PRETTYPRINT_REGULAR
	If this is set to True (the default)
jsonify responses will be pretty printed
if they are not requested by an
XMLHttpRequest object (controlled by
the X-Requested-With header)

	JSONIFY_MIMETYPE
	MIME type used for jsonify responses.

	TEMPLATES_AUTO_RELOAD
	Whether to check for modifications of
the template source and reload it
automatically. By default the value is
None which means that Flask checks
original file only in debug mode.

	EXPLAIN_TEMPLATE_LOADING
	If this is enabled then every attempt to
load a template will write an info
message to the logger explaining the
attempts to locate the template. This
can be useful to figure out why
templates cannot be found or wrong
templates appear to be loaded.

More on SERVER_NAME

The SERVER_NAME key is used for the subdomain support. Because
Flask cannot guess the subdomain part without the knowledge of the
actual server name, this is required if you want to work with
subdomains. This is also used for the session cookie.

Please keep in mind that not only Flask has the problem of not knowing
what subdomains are, your web browser does as well. Most modern web
browsers will not allow cross-subdomain cookies to be set on a
server name without dots in it. So if your server name is
'localhost' you will not be able to set a cookie for
'localhost' and every subdomain of it. Please choose a different
server name in that case, like 'myapplication.local' and add
this name + the subdomains you want to use into your host config
or setup a local bind [https://www.isc.org/downloads/bind/].

New in version 0.4: LOGGER_NAME

New in version 0.5: SERVER_NAME

New in version 0.6: MAX_CONTENT_LENGTH

New in version 0.7: PROPAGATE_EXCEPTIONS, PRESERVE_CONTEXT_ON_EXCEPTION

New in version 0.8: TRAP_BAD_REQUEST_ERRORS, TRAP_HTTP_EXCEPTIONS,
APPLICATION_ROOT, SESSION_COOKIE_DOMAIN,
SESSION_COOKIE_PATH, SESSION_COOKIE_HTTPONLY,
SESSION_COOKIE_SECURE

New in version 0.9: PREFERRED_URL_SCHEME

New in version 0.10: JSON_AS_ASCII, JSON_SORT_KEYS, JSONIFY_PRETTYPRINT_REGULAR

New in version 0.11: SESSION_REFRESH_EACH_REQUEST, TEMPLATES_AUTO_RELOAD,
LOGGER_HANDLER_POLICY, EXPLAIN_TEMPLATE_LOADING

Configuring from Files

Configuration becomes more useful if you can store it in a separate file,
ideally located outside the actual application package. This makes
packaging and distributing your application possible via various package
handling tools (Deploying with Setuptools) and finally modifying the
configuration file afterwards.

So a common pattern is this:

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

This first loads the configuration from the
yourapplication.default_settings module and then overrides the values
with the contents of the file the YOURAPPLICATION_SETTINGS
environment variable points to. This environment variable can be set on
Linux or OS X with the export command in the shell before starting the
server:

$ export YOURAPPLICATION_SETTINGS=/path/to/settings.cfg
$ python run-app.py
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader...

On Windows systems use the set builtin instead:

>set YOURAPPLICATION_SETTINGS=\path\to\settings.cfg

The configuration files themselves are actual Python files. Only values
in uppercase are actually stored in the config object later on. So make
sure to use uppercase letters for your config keys.

Here is an example of a configuration file:

Example configuration
DEBUG = False
SECRET_KEY = '?\xbf,\xb4\x8d\xa3"<\x9c\xb0@\x0f5\xab,w\xee\x8d$0\x13\x8b83'

Make sure to load the configuration very early on, so that extensions have
the ability to access the configuration when starting up. There are other
methods on the config object as well to load from individual files. For a
complete reference, read the Config object’s
documentation.

Configuration Best Practices

The downside with the approach mentioned earlier is that it makes testing
a little harder. There is no single 100% solution for this problem in
general, but there are a couple of things you can keep in mind to improve
that experience:

	Create your application in a function and register blueprints on it.
That way you can create multiple instances of your application with
different configurations attached which makes unittesting a lot
easier. You can use this to pass in configuration as needed.

	Do not write code that needs the configuration at import time. If you
limit yourself to request-only accesses to the configuration you can
reconfigure the object later on as needed.

Development / Production

Most applications need more than one configuration. There should be at
least separate configurations for the production server and the one used
during development. The easiest way to handle this is to use a default
configuration that is always loaded and part of the version control, and a
separate configuration that overrides the values as necessary as mentioned
in the example above:

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

Then you just have to add a separate config.py file and export
YOURAPPLICATION_SETTINGS=/path/to/config.py and you are done. However
there are alternative ways as well. For example you could use imports or
subclassing.

What is very popular in the Django world is to make the import explicit in
the config file by adding from yourapplication.default_settings
import * to the top of the file and then overriding the changes by hand.
You could also inspect an environment variable like
YOURAPPLICATION_MODE and set that to production, development etc
and import different hardcoded files based on that.

An interesting pattern is also to use classes and inheritance for
configuration:

class Config(object):
 DEBUG = False
 TESTING = False
 DATABASE_URI = 'sqlite://:memory:'

class ProductionConfig(Config):
 DATABASE_URI = 'mysql://user@localhost/foo'

class DevelopmentConfig(Config):
 DEBUG = True

class TestingConfig(Config):
 TESTING = True

To enable such a config you just have to call into
from_object():

app.config.from_object('configmodule.ProductionConfig')

There are many different ways and it’s up to you how you want to manage
your configuration files. However here a list of good recommendations:

	Keep a default configuration in version control. Either populate the
config with this default configuration or import it in your own
configuration files before overriding values.

	Use an environment variable to switch between the configurations.
This can be done from outside the Python interpreter and makes
development and deployment much easier because you can quickly and
easily switch between different configs without having to touch the
code at all. If you are working often on different projects you can
even create your own script for sourcing that activates a virtualenv
and exports the development configuration for you.

	Use a tool like fabric [http://www.fabfile.org/] in production to push code and
configurations separately to the production server(s). For some
details about how to do that, head over to the
Deploying with Fabric pattern.

Instance Folders

New in version 0.8.

Flask 0.8 introduces instance folders. Flask for a long time made it
possible to refer to paths relative to the application’s folder directly
(via Flask.root_path). This was also how many developers loaded
configurations stored next to the application. Unfortunately however this
only works well if applications are not packages in which case the root
path refers to the contents of the package.

With Flask 0.8 a new attribute was introduced:
Flask.instance_path. It refers to a new concept called the
“instance folder”. The instance folder is designed to not be under
version control and be deployment specific. It’s the perfect place to
drop things that either change at runtime or configuration files.

You can either explicitly provide the path of the instance folder when
creating the Flask application or you can let Flask autodetect the
instance folder. For explicit configuration use the instance_path
parameter:

app = Flask(__name__, instance_path='/path/to/instance/folder')

Please keep in mind that this path must be absolute when provided.

If the instance_path parameter is not provided the following default
locations are used:

	Uninstalled module:

/myapp.py
/instance

	Uninstalled package:

/myapp
 /__init__.py
/instance

	Installed module or package:

$PREFIX/lib/python2.X/site-packages/myapp
$PREFIX/var/myapp-instance

$PREFIX is the prefix of your Python installation. This can be
/usr or the path to your virtualenv. You can print the value of
sys.prefix to see what the prefix is set to.

Since the config object provided loading of configuration files from
relative filenames we made it possible to change the loading via filenames
to be relative to the instance path if wanted. The behavior of relative
paths in config files can be flipped between “relative to the application
root” (the default) to “relative to instance folder” via the
instance_relative_config switch to the application constructor:

app = Flask(__name__, instance_relative_config=True)

Here is a full example of how to configure Flask to preload the config
from a module and then override the config from a file in the config
folder if it exists:

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('yourapplication.default_settings')
app.config.from_pyfile('application.cfg', silent=True)

The path to the instance folder can be found via the
Flask.instance_path. Flask also provides a shortcut to open a
file from the instance folder with Flask.open_instance_resource().

Example usage for both:

filename = os.path.join(app.instance_path, 'application.cfg')
with open(filename) as f:
 config = f.read()

or via open_instance_resource:
with app.open_instance_resource('application.cfg') as f:
 config = f.read()

Signals

New in version 0.6.

Starting with Flask 0.6, there is integrated support for signalling in
Flask. This support is provided by the excellent blinker [https://pypi.python.org/pypi/blinker] library and
will gracefully fall back if it is not available.

What are signals? Signals help you decouple applications by sending
notifications when actions occur elsewhere in the core framework or
another Flask extensions. In short, signals allow certain senders to
notify subscribers that something happened.

Flask comes with a couple of signals and other extensions might provide
more. Also keep in mind that signals are intended to notify subscribers
and should not encourage subscribers to modify data. You will notice that
there are signals that appear to do the same thing like some of the
builtin decorators do (eg: request_started is very similar
to before_request()). However, there are differences in
how they work. The core before_request() handler, for
example, is executed in a specific order and is able to abort the request
early by returning a response. In contrast all signal handlers are
executed in undefined order and do not modify any data.

The big advantage of signals over handlers is that you can safely
subscribe to them for just a split second. These temporary
subscriptions are helpful for unittesting for example. Say you want to
know what templates were rendered as part of a request: signals allow you
to do exactly that.

Subscribing to Signals

To subscribe to a signal, you can use the
connect() [https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connect] method of a signal. The first
argument is the function that should be called when the signal is emitted,
the optional second argument specifies a sender. To unsubscribe from a
signal, you can use the disconnect() [https://pythonhosted.org/blinker/index.html#blinker.base.Signal.disconnect] method.

For all core Flask signals, the sender is the application that issued the
signal. When you subscribe to a signal, be sure to also provide a sender
unless you really want to listen for signals from all applications. This is
especially true if you are developing an extension.

For example, here is a helper context manager that can be used in a unittest
to determine which templates were rendered and what variables were passed
to the template:

from flask import template_rendered
from contextlib import contextmanager

@contextmanager
def captured_templates(app):
 recorded = []
 def record(sender, template, context, **extra):
 recorded.append((template, context))
 template_rendered.connect(record, app)
 try:
 yield recorded
 finally:
 template_rendered.disconnect(record, app)

This can now easily be paired with a test client:

with captured_templates(app) as templates:
 rv = app.test_client().get('/')
 assert rv.status_code == 200
 assert len(templates) == 1
 template, context = templates[0]
 assert template.name == 'index.html'
 assert len(context['items']) == 10

Make sure to subscribe with an extra **extra argument so that your
calls don’t fail if Flask introduces new arguments to the signals.

All the template rendering in the code issued by the application app
in the body of the with block will now be recorded in the templates
variable. Whenever a template is rendered, the template object as well as
context are appended to it.

Additionally there is a convenient helper method
(connected_to() [https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connected_to]) that allows you to
temporarily subscribe a function to a signal with a context manager on
its own. Because the return value of the context manager cannot be
specified that way, you have to pass the list in as an argument:

from flask import template_rendered

def captured_templates(app, recorded, **extra):
 def record(sender, template, context):
 recorded.append((template, context))
 return template_rendered.connected_to(record, app)

The example above would then look like this:

templates = []
with captured_templates(app, templates, **extra):
 ...
 template, context = templates[0]

Blinker API Changes

The connected_to() [https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connected_to] method arrived in Blinker
with version 1.1.

Creating Signals

If you want to use signals in your own application, you can use the
blinker library directly. The most common use case are named signals in a
custom Namespace [https://pythonhosted.org/blinker/index.html#blinker.base.Namespace].. This is what is recommended
most of the time:

from blinker import Namespace
my_signals = Namespace()

Now you can create new signals like this:

model_saved = my_signals.signal('model-saved')

The name for the signal here makes it unique and also simplifies
debugging. You can access the name of the signal with the
name [https://pythonhosted.org/blinker/index.html#blinker.base.NamedSignal.name] attribute.

For Extension Developers

If you are writing a Flask extension and you want to gracefully degrade for
missing blinker installations, you can do so by using the
flask.signals.Namespace class.

Sending Signals

If you want to emit a signal, you can do so by calling the
send() [https://pythonhosted.org/blinker/index.html#blinker.base.Signal.send] method. It accepts a sender as first
argument and optionally some keyword arguments that are forwarded to the
signal subscribers:

class Model(object):
 ...

 def save(self):
 model_saved.send(self)

Try to always pick a good sender. If you have a class that is emitting a
signal, pass self as sender. If you are emitting a signal from a random
function, you can pass current_app._get_current_object() as sender.

Passing Proxies as Senders

Never pass current_app as sender to a signal. Use
current_app._get_current_object() instead. The reason for this is
that current_app is a proxy and not the real application
object.

Signals and Flask’s Request Context

Signals fully support The Request Context when receiving signals.
Context-local variables are consistently available between
request_started and request_finished, so you can
rely on flask.g and others as needed. Note the limitations described
in Sending Signals and the request_tearing_down signal.

Decorator Based Signal Subscriptions

With Blinker 1.1 you can also easily subscribe to signals by using the new
connect_via() decorator:

from flask import template_rendered

@template_rendered.connect_via(app)
def when_template_rendered(sender, template, context, **extra):
 print 'Template %s is rendered with %s' % (template.name, context)

Core Signals

Take a look at Signals for a list of all builtin signals.

Pluggable Views

New in version 0.7.

Flask 0.7 introduces pluggable views inspired by the generic views from
Django which are based on classes instead of functions. The main
intention is that you can replace parts of the implementations and this
way have customizable pluggable views.

Basic Principle

Consider you have a function that loads a list of objects from the
database and renders into a template:

@app.route('/users/')
def show_users(page):
 users = User.query.all()
 return render_template('users.html', users=users)

This is simple and flexible, but if you want to provide this view in a
generic fashion that can be adapted to other models and templates as well
you might want more flexibility. This is where pluggable class-based
views come into place. As the first step to convert this into a class
based view you would do this:

from flask.views import View

class ShowUsers(View):

 def dispatch_request(self):
 users = User.query.all()
 return render_template('users.html', objects=users)

app.add_url_rule('/users/', view_func=ShowUsers.as_view('show_users'))

As you can see what you have to do is to create a subclass of
flask.views.View and implement
dispatch_request(). Then we have to convert that
class into an actual view function by using the
as_view() class method. The string you pass to
that function is the name of the endpoint that view will then have. But
this by itself is not helpful, so let’s refactor the code a bit:

from flask.views import View

class ListView(View):

 def get_template_name(self):
 raise NotImplementedError()

 def render_template(self, context):
 return render_template(self.get_template_name(), **context)

 def dispatch_request(self):
 context = {'objects': self.get_objects()}
 return self.render_template(context)

class UserView(ListView):

 def get_template_name(self):
 return 'users.html'

 def get_objects(self):
 return User.query.all()

This of course is not that helpful for such a small example, but it’s good
enough to explain the basic principle. When you have a class-based view
the question comes up what self points to. The way this works is that
whenever the request is dispatched a new instance of the class is created
and the dispatch_request() method is called with
the parameters from the URL rule. The class itself is instantiated with
the parameters passed to the as_view() function.
For instance you can write a class like this:

class RenderTemplateView(View):
 def __init__(self, template_name):
 self.template_name = template_name
 def dispatch_request(self):
 return render_template(self.template_name)

And then you can register it like this:

app.add_url_rule('/about', view_func=RenderTemplateView.as_view(
 'about_page', template_name='about.html'))

Method Hints

Pluggable views are attached to the application like a regular function by
either using route() or better
add_url_rule(). That however also means that you would
have to provide the names of the HTTP methods the view supports when you
attach this. In order to move that information to the class you can
provide a methods attribute that has this
information:

class MyView(View):
 methods = ['GET', 'POST']

 def dispatch_request(self):
 if request.method == 'POST':
 ...
 ...

app.add_url_rule('/myview', view_func=MyView.as_view('myview'))

Method Based Dispatching

For RESTful APIs it’s especially helpful to execute a different function
for each HTTP method. With the flask.views.MethodView you can
easily do that. Each HTTP method maps to a function with the same name
(just in lowercase):

from flask.views import MethodView

class UserAPI(MethodView):

 def get(self):
 users = User.query.all()
 ...

 def post(self):
 user = User.from_form_data(request.form)
 ...

app.add_url_rule('/users/', view_func=UserAPI.as_view('users'))

That way you also don’t have to provide the
methods attribute. It’s automatically set based
on the methods defined in the class.

Decorating Views

Since the view class itself is not the view function that is added to the
routing system it does not make much sense to decorate the class itself.
Instead you either have to decorate the return value of
as_view() by hand:

def user_required(f):
 """Checks whether user is logged in or raises error 401."""
 def decorator(*args, **kwargs):
 if not g.user:
 abort(401)
 return f(*args, **kwargs)
 return decorator

view = user_required(UserAPI.as_view('users'))
app.add_url_rule('/users/', view_func=view)

Starting with Flask 0.8 there is also an alternative way where you can
specify a list of decorators to apply in the class declaration:

class UserAPI(MethodView):
 decorators = [user_required]

Due to the implicit self from the caller’s perspective you cannot use
regular view decorators on the individual methods of the view however,
keep this in mind.

Method Views for APIs

Web APIs are often working very closely with HTTP verbs so it makes a lot
of sense to implement such an API based on the
MethodView. That said, you will notice that the API
will require different URL rules that go to the same method view most of
the time. For instance consider that you are exposing a user object on
the web:

	URL
	Method
	Description

	/users/
	GET
	Gives a list of all users

	/users/
	POST
	Creates a new user

	/users/<id>
	GET
	Shows a single user

	/users/<id>
	PUT
	Updates a single user

	/users/<id>
	DELETE
	Deletes a single user

So how would you go about doing that with the
MethodView? The trick is to take advantage of the
fact that you can provide multiple rules to the same view.

Let’s assume for the moment the view would look like this:

class UserAPI(MethodView):

 def get(self, user_id):
 if user_id is None:
 # return a list of users
 pass
 else:
 # expose a single user
 pass

 def post(self):
 # create a new user
 pass

 def delete(self, user_id):
 # delete a single user
 pass

 def put(self, user_id):
 # update a single user
 pass

So how do we hook this up with the routing system? By adding two rules
and explicitly mentioning the methods for each:

user_view = UserAPI.as_view('user_api')
app.add_url_rule('/users/', defaults={'user_id': None},
 view_func=user_view, methods=['GET',])
app.add_url_rule('/users/', view_func=user_view, methods=['POST',])
app.add_url_rule('/users/<int:user_id>', view_func=user_view,
 methods=['GET', 'PUT', 'DELETE'])

If you have a lot of APIs that look similar you can refactor that
registration code:

def register_api(view, endpoint, url, pk='id', pk_type='int'):
 view_func = view.as_view(endpoint)
 app.add_url_rule(url, defaults={pk: None},
 view_func=view_func, methods=['GET',])
 app.add_url_rule(url, view_func=view_func, methods=['POST',])
 app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func,
 methods=['GET', 'PUT', 'DELETE'])

register_api(UserAPI, 'user_api', '/users/', pk='user_id')

The Application Context

New in version 0.9.

One of the design ideas behind Flask is that there are two different
“states” in which code is executed. The application setup state in which
the application implicitly is on the module level. It starts when the
Flask object is instantiated, and it implicitly ends when the
first request comes in. While the application is in this state a few
assumptions are true:

	the programmer can modify the application object safely.

	no request handling happened so far

	you have to have a reference to the application object in order to
modify it, there is no magic proxy that can give you a reference to
the application object you’re currently creating or modifying.

In contrast, during request handling, a couple of other rules exist:

	while a request is active, the context local objects
(flask.request and others) point to the current request.

	any code can get hold of these objects at any time.

There is a third state which is sitting in between a little bit.
Sometimes you are dealing with an application in a way that is similar to
how you interact with applications during request handling; just that there
is no request active. Consider, for instance, that you’re sitting in an
interactive Python shell and interacting with the application, or a
command line application.

The application context is what powers the current_app
context local.

Purpose of the Application Context

The main reason for the application’s context existence is that in the
past a bunch of functionality was attached to the request context for lack
of a better solution. Since one of the pillars of Flask’s design is that
you can have more than one application in the same Python process.

So how does the code find the “right” application? In the past we
recommended passing applications around explicitly, but that caused issues
with libraries that were not designed with that in mind.

A common workaround for that problem was to use the
current_app proxy later on, which was bound to the current
request’s application reference. Since creating such a request context is
an unnecessarily expensive operation in case there is no request around,
the application context was introduced.

Creating an Application Context

There are two ways to make an application context. The first one is
implicit: whenever a request context is pushed, an application context
will be created alongside if this is necessary. As a result, you can
ignore the existence of the application context unless you need it.

The second way is the explicit way using the
app_context() method:

from flask import Flask, current_app

app = Flask(__name__)
with app.app_context():
 # within this block, current_app points to app.
 print current_app.name

The application context is also used by the url_for()
function in case a SERVER_NAME was configured. This allows you to
generate URLs even in the absence of a request.

If no request context has been pushed and an application context has
not been explicitly set, a RuntimeError will be raised.

RuntimeError: Working outside of application context.

Locality of the Context

The application context is created and destroyed as necessary. It never
moves between threads and it will not be shared between requests. As such
it is the perfect place to store database connection information and other
things. The internal stack object is called flask._app_ctx_stack.
Extensions are free to store additional information on the topmost level,
assuming they pick a sufficiently unique name and should put their
information there, instead of on the flask.g object which is reserved
for user code.

For more information about that, see Flask Extension Development.

Context Usage

The context is typically used to cache resources that need to be created
on a per-request or usage case. For instance, database connections are
destined to go there. When storing things on the application context
unique names should be chosen as this is a place that is shared between
Flask applications and extensions.

The most common usage is to split resource management into two parts:

	an implicit resource caching on the context.

	a context teardown based resource deallocation.

Generally there would be a get_X() function that creates resource
X if it does not exist yet and otherwise returns the same resource,
and a teardown_X() function that is registered as teardown handler.

This is an example that connects to a database:

import sqlite3
from flask import g

def get_db():
 db = getattr(g, '_database', None)
 if db is None:
 db = g._database = connect_to_database()
 return db

@app.teardown_appcontext
def teardown_db(exception):
 db = getattr(g, '_database', None)
 if db is not None:
 db.close()

The first time get_db() is called the connection will be established.
To make this implicit a LocalProxy [http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalProxy] can be used:

from werkzeug.local import LocalProxy
db = LocalProxy(get_db)

That way a user can directly access db which internally calls
get_db().

The Request Context

This document describes the behavior in Flask 0.7 which is mostly in line
with the old behavior but has some small, subtle differences.

It is recommended that you read the The Application Context chapter first.

Diving into Context Locals

Say you have a utility function that returns the URL the user should be
redirected to. Imagine it would always redirect to the URL’s next
parameter or the HTTP referrer or the index page:

from flask import request, url_for

def redirect_url():
 return request.args.get('next') or \
 request.referrer or \
 url_for('index')

As you can see, it accesses the request object. If you try to run this
from a plain Python shell, this is the exception you will see:

>>> redirect_url()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'request'

That makes a lot of sense because we currently do not have a request we
could access. So we have to make a request and bind it to the current
context. The test_request_context method can create
us a RequestContext:

>>> ctx = app.test_request_context('/?next=http://example.com/')

This context can be used in two ways. Either with the with statement
or by calling the push() and
pop() methods:

>>> ctx.push()

From that point onwards you can work with the request object:

>>> redirect_url()
u'http://example.com/'

Until you call pop:

>>> ctx.pop()

Because the request context is internally maintained as a stack you can
push and pop multiple times. This is very handy to implement things like
internal redirects.

For more information of how to utilize the request context from the
interactive Python shell, head over to the Working with the Shell chapter.

How the Context Works

If you look into how the Flask WSGI application internally works, you will
find a piece of code that looks very much like this:

def wsgi_app(self, environ):
 with self.request_context(environ):
 try:
 response = self.full_dispatch_request()
 except Exception as e:
 response = self.make_response(self.handle_exception(e))
 return response(environ, start_response)

The method request_context() returns a new
RequestContext object and uses it in combination with
the with statement to bind the context. Everything that is called from
the same thread from this point onwards until the end of the with
statement will have access to the request globals (flask.request
and others).

The request context internally works like a stack: The topmost level on
the stack is the current active request.
push() adds the context to the stack on
the very top, pop() removes it from the
stack again. On popping the application’s
teardown_request() functions are also executed.

Another thing of note is that the request context will automatically also
create an application context when it’s pushed and
there is no application context for that application so far.

Callbacks and Errors

What happens if an error occurs in Flask during request processing? This
particular behavior changed in 0.7 because we wanted to make it easier to
understand what is actually happening. The new behavior is quite simple:

	Before each request, before_request() functions are
executed. If one of these functions return a response, the other
functions are no longer called. In any case however the return value
is treated as a replacement for the view’s return value.

	If the before_request() functions did not return a
response, the regular request handling kicks in and the view function
that was matched has the chance to return a response.

	The return value of the view is then converted into an actual response
object and handed over to the after_request()
functions which have the chance to replace it or modify it in place.

	At the end of the request the teardown_request()
functions are executed. This always happens, even in case of an
unhandled exception down the road or if a before-request handler was
not executed yet or at all (for example in test environments sometimes
you might want to not execute before-request callbacks).

Now what happens on errors? In production mode if an exception is not
caught, the 500 internal server handler is called. In development mode
however the exception is not further processed and bubbles up to the WSGI
server. That way things like the interactive debugger can provide helpful
debug information.

An important change in 0.7 is that the internal server error is now no
longer post processed by the after request callbacks and after request
callbacks are no longer guaranteed to be executed. This way the internal
dispatching code looks cleaner and is easier to customize and understand.

The new teardown functions are supposed to be used as a replacement for
things that absolutely need to happen at the end of request.

Teardown Callbacks

The teardown callbacks are special callbacks in that they are executed at
a different point. Strictly speaking they are independent of the actual
request handling as they are bound to the lifecycle of the
RequestContext object. When the request context is
popped, the teardown_request() functions are called.

This is important to know if the life of the request context is prolonged
by using the test client in a with statement or when using the request
context from the command line:

with app.test_client() as client:
 resp = client.get('/foo')
 # the teardown functions are still not called at that point
 # even though the response ended and you have the response
 # object in your hand

only when the code reaches this point the teardown functions
are called. Alternatively the same thing happens if another
request was triggered from the test client

It’s easy to see the behavior from the command line:

>>> app = Flask(__name__)
>>> @app.teardown_request
... def teardown_request(exception=None):
... print 'this runs after request'
...
>>> ctx = app.test_request_context()
>>> ctx.push()
>>> ctx.pop()
this runs after request
>>>

Keep in mind that teardown callbacks are always executed, even if
before-request callbacks were not executed yet but an exception happened.
Certain parts of the test system might also temporarily create a request
context without calling the before-request handlers. Make sure to write
your teardown-request handlers in a way that they will never fail.

Notes On Proxies

Some of the objects provided by Flask are proxies to other objects. The
reason behind this is that these proxies are shared between threads and
they have to dispatch to the actual object bound to a thread behind the
scenes as necessary.

Most of the time you don’t have to care about that, but there are some
exceptions where it is good to know that this object is an actual proxy:

	The proxy objects do not fake their inherited types, so if you want to
perform actual instance checks, you have to do that on the instance
that is being proxied (see _get_current_object below).

	if the object reference is important (so for example for sending
Signals)

If you need to get access to the underlying object that is proxied, you
can use the _get_current_object() [http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalProxy._get_current_object] method:

app = current_app._get_current_object()
my_signal.send(app)

Context Preservation on Error

If an error occurs or not, at the end of the request the request context
is popped and all data associated with it is destroyed. During
development however that can be problematic as you might want to have the
information around for a longer time in case an exception occurred. In
Flask 0.6 and earlier in debug mode, if an exception occurred, the
request context was not popped so that the interactive debugger can still
provide you with important information.

Starting with Flask 0.7 you have finer control over that behavior by
setting the PRESERVE_CONTEXT_ON_EXCEPTION configuration variable. By
default it’s linked to the setting of DEBUG. If the application is in
debug mode the context is preserved, in production mode it’s not.

Do not force activate PRESERVE_CONTEXT_ON_EXCEPTION in production mode
as it will cause your application to leak memory on exceptions. However
it can be useful during development to get the same error preserving
behavior as in development mode when attempting to debug an error that
only occurs under production settings.

Modular Applications with Blueprints

New in version 0.7.

Flask uses a concept of blueprints for making application components and
supporting common patterns within an application or across applications.
Blueprints can greatly simplify how large applications work and provide a
central means for Flask extensions to register operations on applications.
A Blueprint object works similarly to a Flask
application object, but it is not actually an application. Rather it is a
blueprint of how to construct or extend an application.

Why Blueprints?

Blueprints in Flask are intended for these cases:

	Factor an application into a set of blueprints. This is ideal for
larger applications; a project could instantiate an application object,
initialize several extensions, and register a collection of blueprints.

	Register a blueprint on an application at a URL prefix and/or subdomain.
Parameters in the URL prefix/subdomain become common view arguments
(with defaults) across all view functions in the blueprint.

	Register a blueprint multiple times on an application with different URL
rules.

	Provide template filters, static files, templates, and other utilities
through blueprints. A blueprint does not have to implement applications
or view functions.

	Register a blueprint on an application for any of these cases when
initializing a Flask extension.

A blueprint in Flask is not a pluggable app because it is not actually an
application – it’s a set of operations which can be registered on an
application, even multiple times. Why not have multiple application
objects? You can do that (see Application Dispatching), but your applications
will have separate configs and will be managed at the WSGI layer.

Blueprints instead provide separation at the Flask level, share
application config, and can change an application object as necessary with
being registered. The downside is that you cannot unregister a blueprint
once an application was created without having to destroy the whole
application object.

The Concept of Blueprints

The basic concept of blueprints is that they record operations to execute
when registered on an application. Flask associates view functions with
blueprints when dispatching requests and generating URLs from one endpoint
to another.

My First Blueprint

This is what a very basic blueprint looks like. In this case we want to
implement a blueprint that does simple rendering of static templates:

from flask import Blueprint, render_template, abort
from jinja2 import TemplateNotFound

simple_page = Blueprint('simple_page', __name__,
 template_folder='templates')

@simple_page.route('/', defaults={'page': 'index'})
@simple_page.route('/<page>')
def show(page):
 try:
 return render_template('pages/%s.html' % page)
 except TemplateNotFound:
 abort(404)

When you bind a function with the help of the @simple_page.route
decorator the blueprint will record the intention of registering the
function show on the application when it’s later registered.
Additionally it will prefix the endpoint of the function with the
name of the blueprint which was given to the Blueprint
constructor (in this case also simple_page).

Registering Blueprints

So how do you register that blueprint? Like this:

from flask import Flask
from yourapplication.simple_page import simple_page

app = Flask(__name__)
app.register_blueprint(simple_page)

If you check the rules registered on the application, you will find
these:

[<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
 <Rule '/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
 <Rule '/' (HEAD, OPTIONS, GET) -> simple_page.show>]

The first one is obviously from the application itself for the static
files. The other two are for the show function of the simple_page
blueprint. As you can see, they are also prefixed with the name of the
blueprint and separated by a dot (.).

Blueprints however can also be mounted at different locations:

app.register_blueprint(simple_page, url_prefix='/pages')

And sure enough, these are the generated rules:

[<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
 <Rule '/pages/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
 <Rule '/pages/' (HEAD, OPTIONS, GET) -> simple_page.show>]

On top of that you can register blueprints multiple times though not every
blueprint might respond properly to that. In fact it depends on how the
blueprint is implemented if it can be mounted more than once.

Blueprint Resources

Blueprints can provide resources as well. Sometimes you might want to
introduce a blueprint only for the resources it provides.

Blueprint Resource Folder

Like for regular applications, blueprints are considered to be contained
in a folder. While multiple blueprints can originate from the same folder,
it does not have to be the case and it’s usually not recommended.

The folder is inferred from the second argument to Blueprint which
is usually __name__. This argument specifies what logical Python
module or package corresponds to the blueprint. If it points to an actual
Python package that package (which is a folder on the filesystem) is the
resource folder. If it’s a module, the package the module is contained in
will be the resource folder. You can access the
Blueprint.root_path property to see what the resource folder is:

>>> simple_page.root_path
'/Users/username/TestProject/yourapplication'

To quickly open sources from this folder you can use the
open_resource() function:

with simple_page.open_resource('static/style.css') as f:
 code = f.read()

Static Files

A blueprint can expose a folder with static files by providing a path to a
folder on the filesystem via the static_folder keyword argument. It can
either be an absolute path or one relative to the folder of the
blueprint:

admin = Blueprint('admin', __name__, static_folder='static')

By default the rightmost part of the path is where it is exposed on the
web. Because the folder is called static here it will be available at
the location of the blueprint + /static. Say the blueprint is
registered for /admin the static folder will be at /admin/static.

The endpoint is named blueprint_name.static so you can generate URLs to
it like you would do to the static folder of the application:

url_for('admin.static', filename='style.css')

Templates

If you want the blueprint to expose templates you can do that by providing
the template_folder parameter to the Blueprint constructor:

admin = Blueprint('admin', __name__, template_folder='templates')

For static files, the path can be absolute or relative to the blueprint
resource folder.

The template folder is added to the search path of templates but with a lower
priority than the actual application’s template folder. That way you can
easily override templates that a blueprint provides in the actual application.
This also means that if you don’t want a blueprint template to be accidentally
overridden, make sure that no other blueprint or actual application template
has the same relative path. When multiple blueprints provide the same relative
template path the first blueprint registered takes precedence over the others.

So if you have a blueprint in the folder yourapplication/admin and you
want to render the template 'admin/index.html' and you have provided
templates as a template_folder you will have to create a file like
this: yourapplication/admin/templates/admin/index.html. The reason
for the extra admin folder is to avoid getting our template overridden
by a template named index.html in the actual application template
folder.

To further reiterate this: if you have a blueprint named admin and you
want to render a template called index.html which is specific to this
blueprint, the best idea is to lay out your templates like this:

yourpackage/
 blueprints/
 admin/
 templates/
 admin/
 index.html
 __init__.py

And then when you want to render the template, use admin/index.html as
the name to look up the template by. If you encounter problems loading
the correct templates enable the EXPLAIN_TEMPLATE_LOADING config
variable which will instruct Flask to print out the steps it goes through
to locate templates on every render_template call.

Building URLs

If you want to link from one page to another you can use the
url_for() function just like you normally would do just that you
prefix the URL endpoint with the name of the blueprint and a dot (.):

url_for('admin.index')

Additionally if you are in a view function of a blueprint or a rendered
template and you want to link to another endpoint of the same blueprint,
you can use relative redirects by prefixing the endpoint with a dot only:

url_for('.index')

This will link to admin.index for instance in case the current request
was dispatched to any other admin blueprint endpoint.

Error Handlers

Blueprints support the errorhandler decorator just like the Flask
application object, so it is easy to make Blueprint-specific custom error
pages.

Here is an example for a “404 Page Not Found” exception:

@simple_page.errorhandler(404)
def page_not_found(e):
 return render_template('pages/404.html')

More information on error handling see Custom Error Pages.

Flask Extensions

Flask extensions extend the functionality of Flask in various different
ways. For instance they add support for databases and other common tasks.

Finding Extensions

Flask extensions are listed on the Flask Extension Registry [http://flask.pocoo.org/extensions/] and can be
downloaded with easy_install or pip. If you add a Flask extension
as dependency to your requirements.txt or setup.py file they are
usually installed with a simple command or when your application installs.

Using Extensions

Extensions typically have documentation that goes along that shows how to
use it. There are no general rules in how extensions are supposed to
behave but they are imported from common locations. If you have an
extension called Flask-Foo or Foo-Flask it should be always
importable from flask_foo:

import flask_foo

Building Extensions

While Flask Extension Registry [http://flask.pocoo.org/extensions/] contains many Flask extensions, you may not find
an extension that fits your need. If this is the case, you can always create your own.
Consider reading Flask Extension Development to develop your own Flask extension.

Flask Before 0.8

If you are using Flask 0.7 or earlier the flask.ext package will not
exist, instead you have to import from flaskext.foo or flask_foo
depending on how the extension is distributed. If you want to develop an
application that supports Flask 0.7 or earlier you should still import
from the flask.ext package. We provide you with a compatibility
module that provides this package for older versions of Flask. You can
download it from GitHub: flaskext_compat.py [https://raw.githubusercontent.com/pallets/flask/master/scripts/flaskext_compat.py]

And here is how you can use it:

import flaskext_compat
flaskext_compat.activate()

from flask.ext import foo

Once the flaskext_compat module is activated the flask.ext will
exist and you can start importing from there.

Command Line Interface

New in version 0.11.

One of the nice new features in Flask 0.11 is the built-in integration of
the click [http://click.pocoo.org/] command line interface. This
enables a wide range of new features for the Flask ecosystem and your own
applications.

Basic Usage

After installation of Flask you will now find a flask script
installed into your virtualenv. If you don’t want to install Flask or you
have a special use-case you can also use python -m flask to accomplish
exactly the same.

The way this script works is by providing access to all the commands on
your Flask application’s Flask.cli instance as well as some
built-in commands that are always there. Flask extensions can also
register more commands there if they desire so.

For the flask script to work, an application needs to be
discovered. This is achieved by exporting the FLASK_APP environment
variable. It can be either set to an import path or to a filename of a
Python module that contains a Flask application.

In that imported file the name of the app needs to be called app or
optionally be specified after a colon. For instance
mymodule:application would tell it to use the application object in
the mymodule.py file.

Given a hello.py file with the application in it named app
this is how it can be run.

Environment variables (On Windows use set instead of export):

export FLASK_APP=hello
flask run

Or with a filename:

export FLASK_APP=/path/to/hello.py
flask run

Virtualenv Integration

If you are constantly working with a virtualenv you can also put the
export FLASK_APP into your activate script by adding it to the
bottom of the file. That way every time you activate your virtualenv you
automatically also activate the correct application name.

Debug Flag

The flask script can also be instructed to enable the debug
mode of the application automatically by exporting FLASK_DEBUG. If
set to 1 debug is enabled or 0 disables it:

export FLASK_DEBUG=1

Running a Shell

To run an interactive Python shell you can use the shell command:

flask shell

This will start up an interactive Python shell, setup the correct
application context and setup the local variables in the shell. This is
done by invoking the Flask.make_shell_context() method of the
application. By default you have access to your app and g.

Custom Commands

If you want to add more commands to the shell script you can do this
easily. Flask uses click [http://click.pocoo.org/] for the command interface which makes
creating custom commands very easy. For instance if you want a shell
command to initialize the database you can do this:

import click
from flask import Flask

app = Flask(__name__)

@app.cli.command()
def initdb():
 """Initialize the database."""
 click.echo('Init the db')

The command will then show up on the command line:

$ flask initdb
Init the db

Application Context

Most commands operate on the application so it makes a lot of sense if
they have the application context setup. Because of this, if you register
a callback on app.cli with the command() the
callback will automatically be wrapped through cli.with_appcontext()
which informs the cli system to ensure that an application context is set
up. This behavior is not available if a command is added later with
add_command() or through other means.

It can also be disabled by passing with_appcontext=False to the
decorator:

@app.cli.command(with_appcontext=False)
def example():
 pass

Factory Functions

In case you are using factory functions to create your application (see
Application Factories) you will discover that the flask command
cannot work with them directly. Flask won’t be able to figure out how to
instantiate your application properly by itself. Because of this reason
the recommendation is to create a separate file that instantiates
applications. This is not the only way to make this work. Another is the
Custom Scripts support.

For instance if you have a factory function that creates an application
from a filename you could make a separate file that creates such an
application from an environment variable.

This could be a file named autoapp.py with these contents:

import os
from yourapplication import create_app
app = create_app(os.environ['YOURAPPLICATION_CONFIG'])

Once this has happened you can make the flask command automatically
pick it up:

export YOURAPPLICATION_CONFIG=/path/to/config.cfg
export FLASK_APP=/path/to/autoapp.py

From this point onwards flask will find your application.

Custom Scripts

While the most common way is to use the flask command, you can
also make your own “driver scripts”. Since Flask uses click for the
scripts there is no reason you cannot hook these scripts into any click
application. There is one big caveat and that is, that commands
registered to Flask.cli will expect to be (indirectly at least)
launched from a flask.cli.FlaskGroup click group. This is
necessary so that the commands know which Flask application they have to
work with.

To understand why you might want custom scripts you need to understand how
click finds and executes the Flask application. If you use the
flask script you specify the application to work with on the
command line or environment variable as an import name. This is simple
but it has some limitations. Primarily it does not work with application
factory functions (see Application Factories).

With a custom script you don’t have this problem as you can fully
customize how the application will be created. This is very useful if you
write reusable applications that you want to ship to users and they should
be presented with a custom management script.

To explain all of this, here is an example manage.py script that
manages a hypothetical wiki application. We will go through the details
afterwards:

import os
import click
from flask.cli import FlaskGroup

def create_wiki_app(info):
 from yourwiki import create_app
 return create_app(
 config=os.environ.get('WIKI_CONFIG', 'wikiconfig.py'))

@click.group(cls=FlaskGroup, create_app=create_wiki_app)
def cli():
 """This is a management script for the wiki application."""

if __name__ == '__main__':
 cli()

That’s a lot of code for not much, so let’s go through all parts step by
step.

	First we import the click library as well as the click extensions
from the flask.cli package. Primarily we are here interested
in the FlaskGroup click group.

	The next thing we do is defining a function that is invoked with the
script info object (ScriptInfo) from Flask and its
purpose is to fully import and create the application. This can
either directly import an application object or create it (see
Application Factories). In this case we load the config from an
environment variable.

	Next step is to create a FlaskGroup. In this case we just
make an empty function with a help doc string that just does nothing
and then pass the create_wiki_app function as a factory function.

Whenever click now needs to operate on a Flask application it will
call that function with the script info and ask for it to be created.

	All is rounded up by invoking the script.

CLI Plugins

Flask extensions can always patch the Flask.cli instance with more
commands if they want. However there is a second way to add CLI plugins
to Flask which is through setuptools. If you make a Python package that
should export a Flask command line plugin you can ship a setup.py file
that declares an entrypoint that points to a click command:

Example setup.py:

from setuptools import setup

setup(
 name='flask-my-extension',
 ...
 entry_points='''
 [flask.commands]
 my-command=mypackage.commands:cli
 ''',
)

Inside mypackage/commands.py you can then export a Click object:

import click

@click.command()
def cli():
 """This is an example command."""

Once that package is installed in the same virtualenv as Flask itself you
can run flask my-command to invoke your command. This is useful to
provide extra functionality that Flask itself cannot ship.

Development Server

Starting with Flask 0.11 there are multiple built-in ways to run a
development server. The best one is the flask command line utility
but you can also continue using the Flask.run() method.

Command Line

The flask command line script (Command Line Interface) is strongly recommended for
development because it provides a superior reload experience due to how it
loads the application. The basic usage is like this:

$ export FLASK_APP=my_application
$ export FLASK_DEBUG=1
$ flask run

This will enable the debugger, the reloader and then start the server on
http://localhost:5000/.

The individual features of the server can be controlled by passing more
arguments to the run option. For instance the reloader can be
disabled:

$ flask run --no-reload

In Code

The alternative way to start the application is through the
Flask.run() method. This will immediately launch a local server
exactly the same way the flask script does.

Example:

if __name__ == '__main__':
 app.run()

This works well for the common case but it does not work well for
development which is why from Flask 0.11 onwards the flask
method is recommended. The reason for this is that due to how the reload
mechanism works there are some bizarre side-effects (like executing
certain code twice, sometimes crashing without message or dying when a
syntax or import error happens).

It is however still a perfectly valid method for invoking a non automatic
reloading application.

Working with the Shell

New in version 0.3.

One of the reasons everybody loves Python is the interactive shell. It
basically allows you to execute Python commands in real time and
immediately get results back. Flask itself does not come with an
interactive shell, because it does not require any specific setup upfront,
just import your application and start playing around.

There are however some handy helpers to make playing around in the shell a
more pleasant experience. The main issue with interactive console
sessions is that you’re not triggering a request like a browser does which
means that g, request and others are not
available. But the code you want to test might depend on them, so what
can you do?

This is where some helper functions come in handy. Keep in mind however
that these functions are not only there for interactive shell usage, but
also for unittesting and other situations that require a faked request
context.

Generally it’s recommended that you read the The Request Context
chapter of the documentation first.

Command Line Interface

Starting with Flask 0.11 the recommended way to work with the shell is the
flask shell command which does a lot of this automatically for you.
For instance the shell is automatically initialized with a loaded
application context.

For more information see Command Line Interface.

Creating a Request Context

The easiest way to create a proper request context from the shell is by
using the test_request_context method which creates
us a RequestContext:

>>> ctx = app.test_request_context()

Normally you would use the with statement to make this request object
active, but in the shell it’s easier to use the
push() and
pop() methods by hand:

>>> ctx.push()

From that point onwards you can work with the request object until you
call pop:

>>> ctx.pop()

Firing Before/After Request

By just creating a request context, you still don’t have run the code that
is normally run before a request. This might result in your database
being unavailable if you are connecting to the database in a
before-request callback or the current user not being stored on the
g object etc.

This however can easily be done yourself. Just call
preprocess_request():

>>> ctx = app.test_request_context()
>>> ctx.push()
>>> app.preprocess_request()

Keep in mind that the preprocess_request() function
might return a response object, in that case just ignore it.

To shutdown a request, you need to trick a bit before the after request
functions (triggered by process_response()) operate on
a response object:

>>> app.process_response(app.response_class())
<Response 0 bytes [200 OK]>
>>> ctx.pop()

The functions registered as teardown_request() are
automatically called when the context is popped. So this is the perfect
place to automatically tear down resources that were needed by the request
context (such as database connections).

Further Improving the Shell Experience

If you like the idea of experimenting in a shell, create yourself a module
with stuff you want to star import into your interactive session. There
you could also define some more helper methods for common things such as
initializing the database, dropping tables etc.

Just put them into a module (like shelltools) and import from there:

>>> from shelltools import *

Patterns for Flask

Certain things are common enough that the chances are high you will find
them in most web applications. For example quite a lot of applications
are using relational databases and user authentication. In that case,
chances are they will open a database connection at the beginning of the
request and get the information of the currently logged in user. At the
end of the request, the database connection is closed again.

There are more user contributed snippets and patterns in the Flask
Snippet Archives [http://flask.pocoo.org/snippets/].

	Larger Applications
	Simple Packages

	Working with Blueprints

	Application Factories
	Basic Factories

	Factories & Extensions

	Using Applications

	Factory Improvements

	Application Dispatching
	Working with this Document

	Combining Applications

	Dispatch by Subdomain

	Dispatch by Path

	Implementing API Exceptions
	Simple Exception Class

	Registering an Error Handler

	Usage in Views

	Using URL Processors
	Internationalized Application URLs

	Internationalized Blueprint URLs

	Deploying with Setuptools
	Basic Setup Script

	Tagging Builds

	Distributing Resources

	Declaring Dependencies

	Installing / Developing

	Deploying with Fabric
	Creating the first Fabfile

	Running Fabfiles

	The WSGI File

	The Configuration File

	First Deployment

	Next Steps

	Using SQLite 3 with Flask
	Connect on Demand

	Easy Querying

	Initial Schemas

	SQLAlchemy in Flask
	Flask-SQLAlchemy Extension

	Declarative

	Manual Object Relational Mapping

	SQL Abstraction Layer

	Uploading Files
	A Gentle Introduction

	Improving Uploads

	Upload Progress Bars

	An Easier Solution

	Caching
	Setting up a Cache

	Using a Cache

	View Decorators
	Login Required Decorator

	Caching Decorator

	Templating Decorator

	Endpoint Decorator

	Form Validation with WTForms
	The Forms

	In the View

	Forms in Templates

	Template Inheritance
	Base Template

	Child Template

	Message Flashing
	Simple Flashing

	Flashing With Categories

	Filtering Flash Messages

	AJAX with jQuery
	Loading jQuery

	Where is My Site?

	JSON View Functions

	The HTML

	Custom Error Pages
	Common Error Codes

	Error Handlers

	Lazily Loading Views
	Converting to Centralized URL Map

	Loading Late

	MongoKit in Flask
	Declarative

	PyMongo Compatibility Layer

	Adding a favicon
	See also

	Streaming Contents
	Basic Usage

	Streaming from Templates

	Streaming with Context

	Deferred Request Callbacks
	The Decorator

	Calling the Deferred

	A Practical Example

	Adding HTTP Method Overrides

	Request Content Checksums

	Celery Based Background Tasks
	Installing Celery

	Configuring Celery

	Minimal Example

	Running the Celery Worker

	Subclassing Flask

Larger Applications

For larger applications it’s a good idea to use a package instead of a
module. That is quite simple. Imagine a small application looks like
this:

/yourapplication
 yourapplication.py
 /static
 style.css
 /templates
 layout.html
 index.html
 login.html
 ...

Simple Packages

To convert that into a larger one, just create a new folder
yourapplication inside the existing one and move everything below it.
Then rename yourapplication.py to __init__.py. (Make sure to delete
all .pyc files first, otherwise things would most likely break)

You should then end up with something like that:

/yourapplication
 /yourapplication
 __init__.py
 /static
 style.css
 /templates
 layout.html
 index.html
 login.html
 ...

But how do you run your application now? The naive python
yourapplication/__init__.py will not work. Let’s just say that Python
does not want modules in packages to be the startup file. But that is not
a big problem, just add a new file called setup.py next to the inner
yourapplication folder with the following contents:

from setuptools import setup

setup(
 name='yourapplication',
 packages=['yourapplication'],
 include_package_data=True,
 install_requires=[
 'flask',
],
)

In order to run the application you need to export an environment variable
that tells Flask where to find the application instance:

export FLASK_APP=yourapplication

If you are outside of the project directory make sure to provide the exact
path to your application directory. Similiarly you can turn on “debug
mode” with this environment variable:

export FLASK_DEBUG=true

In order to install and run the application you need to issue the following
commands:

pip install -e .
flask run

What did we gain from this? Now we can restructure the application a bit
into multiple modules. The only thing you have to remember is the
following quick checklist:

	the Flask application object creation has to be in the
__init__.py file. That way each module can import it safely and the
__name__ variable will resolve to the correct package.

	all the view functions (the ones with a route()
decorator on top) have to be imported in the __init__.py file.
Not the object itself, but the module it is in. Import the view module
after the application object is created.

Here’s an example __init__.py:

from flask import Flask
app = Flask(__name__)

import yourapplication.views

And this is what views.py would look like:

from yourapplication import app

@app.route('/')
def index():
 return 'Hello World!'

You should then end up with something like that:

/yourapplication
 setup.py
 /yourapplication
 __init__.py
 views.py
 /static
 style.css
 /templates
 layout.html
 index.html
 login.html
 ...

Circular Imports

Every Python programmer hates them, and yet we just added some:
circular imports (That’s when two modules depend on each other. In this
case views.py depends on __init__.py). Be advised that this is a
bad idea in general but here it is actually fine. The reason for this is
that we are not actually using the views in __init__.py and just
ensuring the module is imported and we are doing that at the bottom of
the file.

There are still some problems with that approach but if you want to use
decorators there is no way around that. Check out the
Becoming Big section for some inspiration how to deal with that.

Working with Blueprints

If you have larger applications it’s recommended to divide them into
smaller groups where each group is implemented with the help of a
blueprint. For a gentle introduction into this topic refer to the
Modular Applications with Blueprints chapter of the documentation.

Application Factories

If you are already using packages and blueprints for your application
(Modular Applications with Blueprints) there are a couple of really nice ways to further improve
the experience. A common pattern is creating the application object when
the blueprint is imported. But if you move the creation of this object
into a function, you can then create multiple instances of this app later.

So why would you want to do this?

	Testing. You can have instances of the application with different
settings to test every case.

	Multiple instances. Imagine you want to run different versions of the
same application. Of course you could have multiple instances with
different configs set up in your webserver, but if you use factories,
you can have multiple instances of the same application running in the
same application process which can be handy.

So how would you then actually implement that?

Basic Factories

The idea is to set up the application in a function. Like this:

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 from yourapplication.model import db
 db.init_app(app)

 from yourapplication.views.admin import admin
 from yourapplication.views.frontend import frontend
 app.register_blueprint(admin)
 app.register_blueprint(frontend)

 return app

The downside is that you cannot use the application object in the blueprints
at import time. You can however use it from within a request. How do you
get access to the application with the config? Use
current_app:

from flask import current_app, Blueprint, render_template
admin = Blueprint('admin', __name__, url_prefix='/admin')

@admin.route('/')
def index():
 return render_template(current_app.config['INDEX_TEMPLATE'])

Here we look up the name of a template in the config.

Factories & Extensions

It’s preferable to create your extensions and app factories so that the
extension object does not initially get bound to the application.

Using Flask-SQLAlchemy [http://pythonhosted.org/Flask-SQLAlchemy/],
as an example, you should not do something along those lines:

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 db = SQLAlchemy(app)

But, rather, in model.py (or equivalent):

db = SQLAlchemy()

and in your application.py (or equivalent):

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 from yourapplication.model import db
 db.init_app(app)

Using this design pattern, no application-specific state is stored on the
extension object, so one extension object can be used for multiple apps.
For more information about the design of extensions refer to Flask Extension Development.

Using Applications

So to use such an application you then have to create the application
first in a separate file otherwise the flask command won’t be able
to find it. Here an example exampleapp.py file that creates such
an application:

from yourapplication import create_app
app = create_app('/path/to/config.cfg')

It can then be used with the flask command:

export FLASK_APP=exampleapp
flask run

Factory Improvements

The factory function from above is not very clever so far, you can improve
it. The following changes are straightforward and possible:

	make it possible to pass in configuration values for unittests so that
you don’t have to create config files on the filesystem

	call a function from a blueprint when the application is setting up so
that you have a place to modify attributes of the application (like
hooking in before / after request handlers etc.)

	Add in WSGI middlewares when the application is creating if necessary.

Application Dispatching

Application dispatching is the process of combining multiple Flask
applications on the WSGI level. You can combine not only Flask
applications but any WSGI application. This would allow you to run a
Django and a Flask application in the same interpreter side by side if
you want. The usefulness of this depends on how the applications work
internally.

The fundamental difference from the module approach is that in this case you are running the same or
different Flask applications that are entirely isolated from each other.
They run different configurations and are dispatched on the WSGI level.

Working with this Document

Each of the techniques and examples below results in an application object
that can be run with any WSGI server. For production, see Deployment Options.
For development, Werkzeug provides a builtin server for development available
at werkzeug.serving.run_simple() [http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple]:

from werkzeug.serving import run_simple
run_simple('localhost', 5000, application, use_reloader=True)

Note that run_simple [http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple] is not intended for
use in production. Use a full-blown WSGI server.

In order to use the interactive debugger, debugging must be enabled both on
the application and the simple server. Here is the “hello world” example with
debugging and run_simple [http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple]:

from flask import Flask
from werkzeug.serving import run_simple

app = Flask(__name__)
app.debug = True

@app.route('/')
def hello_world():
 return 'Hello World!'

if __name__ == '__main__':
 run_simple('localhost', 5000, app,
 use_reloader=True, use_debugger=True, use_evalex=True)

Combining Applications

If you have entirely separated applications and you want them to work next
to each other in the same Python interpreter process you can take
advantage of the werkzeug.wsgi.DispatcherMiddleware [http://werkzeug.pocoo.org/docs/middlewares/#werkzeug.wsgi.DispatcherMiddleware]. The idea
here is that each Flask application is a valid WSGI application and they
are combined by the dispatcher middleware into a larger one that is
dispatched based on prefix.

For example you could have your main application run on / and your
backend interface on /backend:

from werkzeug.wsgi import DispatcherMiddleware
from frontend_app import application as frontend
from backend_app import application as backend

application = DispatcherMiddleware(frontend, {
 '/backend': backend
})

Dispatch by Subdomain

Sometimes you might want to use multiple instances of the same application
with different configurations. Assuming the application is created inside
a function and you can call that function to instantiate it, that is
really easy to implement. In order to develop your application to support
creating new instances in functions have a look at the
Application Factories pattern.

A very common example would be creating applications per subdomain. For
instance you configure your webserver to dispatch all requests for all
subdomains to your application and you then use the subdomain information
to create user-specific instances. Once you have your server set up to
listen on all subdomains you can use a very simple WSGI application to do
the dynamic application creation.

The perfect level for abstraction in that regard is the WSGI layer. You
write your own WSGI application that looks at the request that comes and
delegates it to your Flask application. If that application does not
exist yet, it is dynamically created and remembered:

from threading import Lock

class SubdomainDispatcher(object):

 def __init__(self, domain, create_app):
 self.domain = domain
 self.create_app = create_app
 self.lock = Lock()
 self.instances = {}

 def get_application(self, host):
 host = host.split(':')[0]
 assert host.endswith(self.domain), 'Configuration error'
 subdomain = host[:-len(self.domain)].rstrip('.')
 with self.lock:
 app = self.instances.get(subdomain)
 if app is None:
 app = self.create_app(subdomain)
 self.instances[subdomain] = app
 return app

 def __call__(self, environ, start_response):
 app = self.get_application(environ['HTTP_HOST'])
 return app(environ, start_response)

This dispatcher can then be used like this:

from myapplication import create_app, get_user_for_subdomain
from werkzeug.exceptions import NotFound

def make_app(subdomain):
 user = get_user_for_subdomain(subdomain)
 if user is None:
 # if there is no user for that subdomain we still have
 # to return a WSGI application that handles that request.
 # We can then just return the NotFound() exception as
 # application which will render a default 404 page.
 # You might also redirect the user to the main page then
 return NotFound()

 # otherwise create the application for the specific user
 return create_app(user)

application = SubdomainDispatcher('example.com', make_app)

Dispatch by Path

Dispatching by a path on the URL is very similar. Instead of looking at
the Host header to figure out the subdomain one simply looks at the
request path up to the first slash:

from threading import Lock
from werkzeug.wsgi import pop_path_info, peek_path_info

class PathDispatcher(object):

 def __init__(self, default_app, create_app):
 self.default_app = default_app
 self.create_app = create_app
 self.lock = Lock()
 self.instances = {}

 def get_application(self, prefix):
 with self.lock:
 app = self.instances.get(prefix)
 if app is None:
 app = self.create_app(prefix)
 if app is not None:
 self.instances[prefix] = app
 return app

 def __call__(self, environ, start_response):
 app = self.get_application(peek_path_info(environ))
 if app is not None:
 pop_path_info(environ)
 else:
 app = self.default_app
 return app(environ, start_response)

The big difference between this and the subdomain one is that this one
falls back to another application if the creator function returns None:

from myapplication import create_app, default_app, get_user_for_prefix

def make_app(prefix):
 user = get_user_for_prefix(prefix)
 if user is not None:
 return create_app(user)

application = PathDispatcher(default_app, make_app)

Implementing API Exceptions

It’s very common to implement RESTful APIs on top of Flask. One of the
first things that developers run into is the realization that the builtin
exceptions are not expressive enough for APIs and that the content type of
text/html they are emitting is not very useful for API consumers.

The better solution than using abort to signal errors for invalid API
usage is to implement your own exception type and install an error handler
for it that produces the errors in the format the user is expecting.

Simple Exception Class

The basic idea is to introduce a new exception that can take a proper
human readable message, a status code for the error and some optional
payload to give more context for the error.

This is a simple example:

from flask import jsonify

class InvalidUsage(Exception):
 status_code = 400

 def __init__(self, message, status_code=None, payload=None):
 Exception.__init__(self)
 self.message = message
 if status_code is not None:
 self.status_code = status_code
 self.payload = payload

 def to_dict(self):
 rv = dict(self.payload or ())
 rv['message'] = self.message
 return rv

A view can now raise that exception with an error message. Additionally
some extra payload can be provided as a dictionary through the payload
parameter.

Registering an Error Handler

At that point views can raise that error, but it would immediately result
in an internal server error. The reason for this is that there is no
handler registered for this error class. That however is easy to add:

@app.errorhandler(InvalidUsage)
def handle_invalid_usage(error):
 response = jsonify(error.to_dict())
 response.status_code = error.status_code
 return response

Usage in Views

Here is how a view can use that functionality:

@app.route('/foo')
def get_foo():
 raise InvalidUsage('This view is gone', status_code=410)

Using URL Processors

New in version 0.7.

Flask 0.7 introduces the concept of URL processors. The idea is that you
might have a bunch of resources with common parts in the URL that you
don’t always explicitly want to provide. For instance you might have a
bunch of URLs that have the language code in it but you don’t want to have
to handle it in every single function yourself.

URL processors are especially helpful when combined with blueprints. We
will handle both application specific URL processors here as well as
blueprint specifics.

Internationalized Application URLs

Consider an application like this:

from flask import Flask, g

app = Flask(__name__)

@app.route('/<lang_code>/')
def index(lang_code):
 g.lang_code = lang_code
 ...

@app.route('/<lang_code>/about')
def about(lang_code):
 g.lang_code = lang_code
 ...

This is an awful lot of repetition as you have to handle the language code
setting on the g object yourself in every single function.
Sure, a decorator could be used to simplify this, but if you want to
generate URLs from one function to another you would have to still provide
the language code explicitly which can be annoying.

For the latter, this is where url_defaults() functions
come in. They can automatically inject values into a call for
url_for() automatically. The code below checks if the
language code is not yet in the dictionary of URL values and if the
endpoint wants a value named 'lang_code':

@app.url_defaults
def add_language_code(endpoint, values):
 if 'lang_code' in values or not g.lang_code:
 return
 if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
 values['lang_code'] = g.lang_code

The method is_endpoint_expecting() [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Map.is_endpoint_expecting] of the URL
map can be used to figure out if it would make sense to provide a language
code for the given endpoint.

The reverse of that function are
url_value_preprocessor()s. They are executed right
after the request was matched and can execute code based on the URL
values. The idea is that they pull information out of the values
dictionary and put it somewhere else:

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):
 g.lang_code = values.pop('lang_code', None)

That way you no longer have to do the lang_code assignment to
g in every function. You can further improve that by
writing your own decorator that prefixes URLs with the language code, but
the more beautiful solution is using a blueprint. Once the
'lang_code' is popped from the values dictionary and it will no longer
be forwarded to the view function reducing the code to this:

from flask import Flask, g

app = Flask(__name__)

@app.url_defaults
def add_language_code(endpoint, values):
 if 'lang_code' in values or not g.lang_code:
 return
 if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
 values['lang_code'] = g.lang_code

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):
 g.lang_code = values.pop('lang_code', None)

@app.route('/<lang_code>/')
def index():
 ...

@app.route('/<lang_code>/about')
def about():
 ...

Internationalized Blueprint URLs

Because blueprints can automatically prefix all URLs with a common string
it’s easy to automatically do that for every function. Furthermore
blueprints can have per-blueprint URL processors which removes a whole lot
of logic from the url_defaults() function because it no
longer has to check if the URL is really interested in a 'lang_code'
parameter:

from flask import Blueprint, g

bp = Blueprint('frontend', __name__, url_prefix='/<lang_code>')

@bp.url_defaults
def add_language_code(endpoint, values):
 values.setdefault('lang_code', g.lang_code)

@bp.url_value_preprocessor
def pull_lang_code(endpoint, values):
 g.lang_code = values.pop('lang_code')

@bp.route('/')
def index():
 ...

@bp.route('/about')
def about():
 ...

Deploying with Setuptools

Setuptools [https://pythonhosted.org/setuptools], is an extension library that is commonly used to
distribute Python libraries and extensions. It extends distutils, a basic
module installation system shipped with Python to also support various more
complex constructs that make larger applications easier to distribute:

	support for dependencies: a library or application can declare a
list of other libraries it depends on which will be installed
automatically for you.

	package registry: setuptools registers your package with your
Python installation. This makes it possible to query information
provided by one package from another package. The best known feature of
this system is the entry point support which allows one package to
declare an “entry point” that another package can hook into to extend the
other package.

	installation manager: pip can install other libraries for you.

If you have Python 2 (>=2.7.9) or Python 3 (>=3.4) installed from python.org,
you will already have pip and setuptools on your system. Otherwise, you
will need to install them yourself.

Flask itself, and all the libraries you can find on PyPI are distributed with
either setuptools or distutils.

In this case we assume your application is called
yourapplication.py and you are not using a module, but a package. If you have not yet converted your application into
a package, head over to the Larger Applications pattern to see
how this can be done.

A working deployment with setuptools is the first step into more complex
and more automated deployment scenarios. If you want to fully automate
the process, also read the Deploying with Fabric chapter.

Basic Setup Script

Because you have Flask installed, you have setuptools available on your system.
Flask already depends upon setuptools.

Standard disclaimer applies: you better use a virtualenv.

Your setup code always goes into a file named setup.py next to your
application. The name of the file is only convention, but because
everybody will look for a file with that name, you better not change it.

A basic setup.py file for a Flask application looks like this:

from setuptools import setup

setup(
 name='Your Application',
 version='1.0',
 long_description=__doc__,
 packages=['yourapplication'],
 include_package_data=True,
 zip_safe=False,
 install_requires=['Flask']
)

Please keep in mind that you have to list subpackages explicitly. If you
want setuptools to lookup the packages for you automatically, you can use
the find_packages function:

from setuptools import setup, find_packages

setup(
 ...
 packages=find_packages()
)

Most parameters to the setup function should be self explanatory,
include_package_data and zip_safe might not be.
include_package_data tells setuptools to look for a MANIFEST.in file
and install all the entries that match as package data. We will use this
to distribute the static files and templates along with the Python module
(see Distributing Resources). The zip_safe flag can be used to
force or prevent zip Archive creation. In general you probably don’t want
your packages to be installed as zip files because some tools do not
support them and they make debugging a lot harder.

Tagging Builds

It is useful to distinguish between release and development builds. Add a
setup.cfg file to configure these options.

[egg_info]
tag_build = .dev
tag_date = 1

[aliases]
release = egg_info -RDb ‘’

Running python setup.py sdist will create a development package
with ”.dev” and the current date appended: flaskr-1.0.dev20160314.tar.gz.
Running python setup.py release sdist will create a release package
with only the version: flaskr-1.0.tar.gz.

Distributing Resources

If you try to install the package you just created, you will notice that
folders like static or templates are not installed for you. The
reason for this is that setuptools does not know which files to add for
you. What you should do, is to create a MANIFEST.in file next to your
setup.py file. This file lists all the files that should be added to
your tarball:

recursive-include yourapplication/templates *
recursive-include yourapplication/static *

Don’t forget that even if you enlist them in your MANIFEST.in file, they
won’t be installed for you unless you set the include_package_data
parameter of the setup function to True!

Declaring Dependencies

Dependencies are declared in the install_requires parameter as a list.
Each item in that list is the name of a package that should be pulled from
PyPI on installation. By default it will always use the most recent
version, but you can also provide minimum and maximum version
requirements. Here some examples:

install_requires=[
 'Flask>=0.2',
 'SQLAlchemy>=0.6',
 'BrokenPackage>=0.7,<=1.0'
]

As mentioned earlier, dependencies are pulled from PyPI. What if you
want to depend on a package that cannot be found on PyPI and won’t be
because it is an internal package you don’t want to share with anyone?
Just do it as if there was a PyPI entry and provide a list of
alternative locations where setuptools should look for tarballs:

dependency_links=['http://example.com/yourfiles']

Make sure that page has a directory listing and the links on the page are
pointing to the actual tarballs with their correct filenames as this is
how setuptools will find the files. If you have an internal company
server that contains the packages, provide the URL to that server.

Installing / Developing

To install your application (ideally into a virtualenv) just run the
setup.py script with the install parameter. It will install your
application into the virtualenv’s site-packages folder and also download
and install all dependencies:

$ python setup.py install

If you are developing on the package and also want the requirements to be
installed, you can use the develop command instead:

$ python setup.py develop

This has the advantage of just installing a link to the site-packages
folder instead of copying the data over. You can then continue to work on
the code without having to run install again after each change.

Deploying with Fabric

Fabric [http://www.fabfile.org/] is a tool for Python similar to Makefiles but with the ability
to execute commands on a remote server. In combination with a properly
set up Python package (Larger Applications) and a good concept for
configurations (Configuration Handling) it is very easy to deploy Flask
applications to external servers.

Before we get started, here a quick checklist of things we have to ensure
upfront:

	Fabric 1.0 has to be installed locally. This tutorial assumes the
latest version of Fabric.

	The application already has to be a package and requires a working
setup.py file (Deploying with Setuptools).

	In the following example we are using mod_wsgi for the remote
servers. You can of course use your own favourite server there, but
for this example we chose Apache + mod_wsgi because it’s very easy
to setup and has a simple way to reload applications without root
access.

Creating the first Fabfile

A fabfile is what controls what Fabric executes. It is named fabfile.py
and executed by the fab command. All the functions defined in that file
will show up as fab subcommands. They are executed on one or more
hosts. These hosts can be defined either in the fabfile or on the command
line. In this case we will add them to the fabfile.

This is a basic first example that has the ability to upload the current
source code to the server and install it into a pre-existing
virtual environment:

from fabric.api import *

the user to use for the remote commands
env.user = 'appuser'
the servers where the commands are executed
env.hosts = ['server1.example.com', 'server2.example.com']

def pack():
 # build the package
 local('python setup.py sdist --formats=gztar', capture=False)

def deploy():
 # figure out the package name and version
 dist = local('python setup.py --fullname', capture=True).strip()
 filename = '%s.tar.gz' % dist

 # upload the package to the temporary folder on the server
 put('dist/%s' % filename, '/tmp/%s' % filename)

 # install the package in the application's virtualenv with pip
 run('/var/www/yourapplication/env/bin/pip install /tmp/%s' % filename)

 # remove the uploaded package
 run('rm -r /tmp/%s' % filename)

 # touch the .wsgi file to trigger a reload in mod_wsgi
 run('touch /var/www/yourapplication.wsgi')

Running Fabfiles

Now how do you execute that fabfile? You use the fab command. To
deploy the current version of the code on the remote server you would use
this command:

$ fab pack deploy

However this requires that our server already has the
/var/www/yourapplication folder created and
/var/www/yourapplication/env to be a virtual environment. Furthermore
are we not creating the configuration or .wsgi file on the server. So
how do we bootstrap a new server into our infrastructure?

This now depends on the number of servers we want to set up. If we just
have one application server (which the majority of applications will
have), creating a command in the fabfile for this is overkill. But
obviously you can do that. In that case you would probably call it
setup or bootstrap and then pass the servername explicitly on the
command line:

$ fab -H newserver.example.com bootstrap

To setup a new server you would roughly do these steps:

	Create the directory structure in /var/www:

$ mkdir /var/www/yourapplication
$ cd /var/www/yourapplication
$ virtualenv --distribute env

	Upload a new application.wsgi file to the server and the
configuration file for the application (eg: application.cfg)

	Create a new Apache config for yourapplication and activate it.
Make sure to activate watching for changes of the .wsgi file so
that we can automatically reload the application by touching it.
(See mod_wsgi (Apache) for more information)

So now the question is, where do the application.wsgi and
application.cfg files come from?

The WSGI File

The WSGI file has to import the application and also to set an environment
variable so that the application knows where to look for the config. This
is a short example that does exactly that:

import os
os.environ['YOURAPPLICATION_CONFIG'] = '/var/www/yourapplication/application.cfg'
from yourapplication import app

The application itself then has to initialize itself like this to look for
the config at that environment variable:

app = Flask(__name__)
app.config.from_object('yourapplication.default_config')
app.config.from_envvar('YOURAPPLICATION_CONFIG')

This approach is explained in detail in the Configuration Handling section of the
documentation.

The Configuration File

Now as mentioned above, the application will find the correct
configuration file by looking up the YOURAPPLICATION_CONFIG environment
variable. So we have to put the configuration in a place where the
application will able to find it. Configuration files have the unfriendly
quality of being different on all computers, so you do not version them
usually.

A popular approach is to store configuration files for different servers
in a separate version control repository and check them out on all
servers. Then symlink the file that is active for the server into the
location where it’s expected (eg: /var/www/yourapplication).

Either way, in our case here we only expect one or two servers and we can
upload them ahead of time by hand.

First Deployment

Now we can do our first deployment. We have set up the servers so that
they have their virtual environments and activated apache configs. Now we
can pack up the application and deploy it:

$ fab pack deploy

Fabric will now connect to all servers and run the commands as written
down in the fabfile. First it will execute pack so that we have our
tarball ready and then it will execute deploy and upload the source code
to all servers and install it there. Thanks to the setup.py file we
will automatically pull in the required libraries into our virtual
environment.

Next Steps

From that point onwards there is so much that can be done to make
deployment actually fun:

	Create a bootstrap command that initializes new servers. It could
initialize a new virtual environment, setup apache appropriately etc.

	Put configuration files into a separate version control repository
and symlink the active configs into place.

	You could also put your application code into a repository and check
out the latest version on the server and then install. That way you
can also easily go back to older versions.

	hook in testing functionality so that you can deploy to an external
server and run the test suite.

Working with Fabric is fun and you will notice that it’s quite magical to
type fab deploy and see your application being deployed automatically
to one or more remote servers.

Using SQLite 3 with Flask

In Flask you can easily implement the opening of database connections on
demand and closing them when the context dies (usually at the end of the
request).

Here is a simple example of how you can use SQLite 3 with Flask:

import sqlite3
from flask import g

DATABASE = '/path/to/database.db'

def get_db():
 db = getattr(g, '_database', None)
 if db is None:
 db = g._database = sqlite3.connect(DATABASE)
 return db

@app.teardown_appcontext
def close_connection(exception):
 db = getattr(g, '_database', None)
 if db is not None:
 db.close()

Now, to use the database, the application must either have an active
application context (which is always true if there is a request in flight)
or create an application context itself. At that point the get_db
function can be used to get the current database connection. Whenever the
context is destroyed the database connection will be terminated.

Note: if you use Flask 0.9 or older you need to use
flask._app_ctx_stack.top instead of g as the flask.g
object was bound to the request and not application context.

Example:

@app.route('/')
def index():
 cur = get_db().cursor()
 ...

Note

Please keep in mind that the teardown request and appcontext functions
are always executed, even if a before-request handler failed or was
never executed. Because of this we have to make sure here that the
database is there before we close it.

Connect on Demand

The upside of this approach (connecting on first use) is that this will
only open the connection if truly necessary. If you want to use this
code outside a request context you can use it in a Python shell by opening
the application context by hand:

with app.app_context():
 # now you can use get_db()

Easy Querying

Now in each request handling function you can access g.db to get the
current open database connection. To simplify working with SQLite, a
row factory function is useful. It is executed for every result returned
from the database to convert the result. For instance, in order to get
dictionaries instead of tuples, this could be inserted into the get_db
function we created above:

def make_dicts(cursor, row):
 return dict((cursor.description[idx][0], value)
 for idx, value in enumerate(row))

db.row_factory = make_dicts

This will make the sqlite3 module return dicts for this database connection, which are much nicer to deal with. Even more simply, we could place this in get_db instead:

db.row_factory = sqlite3.Row

This would use Row objects rather than dicts to return the results of queries. These are namedtuple s, so we can access them either by index or by key. For example, assuming we have a sqlite3.Row called r for the rows id, FirstName, LastName, and MiddleInitial:

>>> # You can get values based on the row's name
>>> r['FirstName']
John
>>> # Or, you can get them based on index
>>> r[1]
John
Row objects are also iterable:
>>> for value in r:
... print(value)
1
John
Doe
M

Additionally, it is a good idea to provide a query function that combines
getting the cursor, executing and fetching the results:

def query_db(query, args=(), one=False):
 cur = get_db().execute(query, args)
 rv = cur.fetchall()
 cur.close()
 return (rv[0] if rv else None) if one else rv

This handy little function, in combination with a row factory, makes
working with the database much more pleasant than it is by just using the
raw cursor and connection objects.

Here is how you can use it:

for user in query_db('select * from users'):
 print user['username'], 'has the id', user['user_id']

Or if you just want a single result:

user = query_db('select * from users where username = ?',
 [the_username], one=True)
if user is None:
 print 'No such user'
else:
 print the_username, 'has the id', user['user_id']

To pass variable parts to the SQL statement, use a question mark in the
statement and pass in the arguments as a list. Never directly add them to
the SQL statement with string formatting because this makes it possible
to attack the application using SQL Injections [http://en.wikipedia.org/wiki/SQL_injection].

Initial Schemas

Relational databases need schemas, so applications often ship a
schema.sql file that creates the database. It’s a good idea to provide
a function that creates the database based on that schema. This function
can do that for you:

def init_db():
 with app.app_context():
 db = get_db()
 with app.open_resource('schema.sql', mode='r') as f:
 db.cursor().executescript(f.read())
 db.commit()

You can then create such a database from the Python shell:

>>> from yourapplication import init_db
>>> init_db()

SQLAlchemy in Flask

Many people prefer SQLAlchemy [http://www.sqlalchemy.org/] for database access. In this case it’s
encouraged to use a package instead of a module for your flask application
and drop the models into a separate module (Larger Applications).
While that is not necessary, it makes a lot of sense.

There are four very common ways to use SQLAlchemy. I will outline each
of them here:

Flask-SQLAlchemy Extension

Because SQLAlchemy is a common database abstraction layer and object
relational mapper that requires a little bit of configuration effort,
there is a Flask extension that handles that for you. This is recommended
if you want to get started quickly.

You can download Flask-SQLAlchemy [http://pythonhosted.org/Flask-SQLAlchemy/] from PyPI [https://pypi.python.org/pypi/Flask-SQLAlchemy].

Declarative

The declarative extension in SQLAlchemy is the most recent method of using
SQLAlchemy. It allows you to define tables and models in one go, similar
to how Django works. In addition to the following text I recommend the
official documentation on the declarative [http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/] extension.

Here’s the example database.py module for your application:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
db_session = scoped_session(sessionmaker(autocommit=False,
 autoflush=False,
 bind=engine))
Base = declarative_base()
Base.query = db_session.query_property()

def init_db():
 # import all modules here that might define models so that
 # they will be registered properly on the metadata. Otherwise
 # you will have to import them first before calling init_db()
 import yourapplication.models
 Base.metadata.create_all(bind=engine)

To define your models, just subclass the Base class that was created by
the code above. If you are wondering why we don’t have to care about
threads here (like we did in the SQLite3 example above with the
g object): that’s because SQLAlchemy does that for us
already with the scoped_session.

To use SQLAlchemy in a declarative way with your application, you just
have to put the following code into your application module. Flask will
automatically remove database sessions at the end of the request or
when the application shuts down:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):
 db_session.remove()

Here is an example model (put this into models.py, e.g.):

from sqlalchemy import Column, Integer, String
from yourapplication.database import Base

class User(Base):
 __tablename__ = 'users'
 id = Column(Integer, primary_key=True)
 name = Column(String(50), unique=True)
 email = Column(String(120), unique=True)

 def __init__(self, name=None, email=None):
 self.name = name
 self.email = email

 def __repr__(self):
 return '<User %r>' % (self.name)

To create the database you can use the init_db function:

>>> from yourapplication.database import init_db
>>> init_db()

You can insert entries into the database like this:

>>> from yourapplication.database import db_session
>>> from yourapplication.models import User
>>> u = User('admin', 'admin@localhost')
>>> db_session.add(u)
>>> db_session.commit()

Querying is simple as well:

>>> User.query.all()
[<User u'admin'>]
>>> User.query.filter(User.name == 'admin').first()
<User u'admin'>

Manual Object Relational Mapping

Manual object relational mapping has a few upsides and a few downsides
versus the declarative approach from above. The main difference is that
you define tables and classes separately and map them together. It’s more
flexible but a little more to type. In general it works like the
declarative approach, so make sure to also split up your application into
multiple modules in a package.

Here is an example database.py module for your application:

from sqlalchemy import create_engine, MetaData
from sqlalchemy.orm import scoped_session, sessionmaker

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
metadata = MetaData()
db_session = scoped_session(sessionmaker(autocommit=False,
 autoflush=False,
 bind=engine))
def init_db():
 metadata.create_all(bind=engine)

As in the declarative approach, you need to close the session after
each request or application context shutdown. Put this into your
application module:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):
 db_session.remove()

Here is an example table and model (put this into models.py):

from sqlalchemy import Table, Column, Integer, String
from sqlalchemy.orm import mapper
from yourapplication.database import metadata, db_session

class User(object):
 query = db_session.query_property()

 def __init__(self, name=None, email=None):
 self.name = name
 self.email = email

 def __repr__(self):
 return '<User %r>' % (self.name)

users = Table('users', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50), unique=True),
 Column('email', String(120), unique=True)
)
mapper(User, users)

Querying and inserting works exactly the same as in the example above.

SQL Abstraction Layer

If you just want to use the database system (and SQL) abstraction layer
you basically only need the engine:

from sqlalchemy import create_engine, MetaData, Table

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
metadata = MetaData(bind=engine)

Then you can either declare the tables in your code like in the examples
above, or automatically load them:

from sqlalchemy import Table

users = Table('users', metadata, autoload=True)

To insert data you can use the insert method. We have to get a
connection first so that we can use a transaction:

>>> con = engine.connect()
>>> con.execute(users.insert(), name='admin', email='admin@localhost')

SQLAlchemy will automatically commit for us.

To query your database, you use the engine directly or use a connection:

>>> users.select(users.c.id == 1).execute().first()
(1, u'admin', u'admin@localhost')

These results are also dict-like tuples:

>>> r = users.select(users.c.id == 1).execute().first()
>>> r['name']
u'admin'

You can also pass strings of SQL statements to the
execute() method:

>>> engine.execute('select * from users where id = :1', [1]).first()
(1, u'admin', u'admin@localhost')

For more information about SQLAlchemy, head over to the
website [http://www.sqlalchemy.org/].

Uploading Files

Ah yes, the good old problem of file uploads. The basic idea of file
uploads is actually quite simple. It basically works like this:

	A <form> tag is marked with enctype=multipart/form-data
and an <input type=file> is placed in that form.

	The application accesses the file from the files
dictionary on the request object.

	use the save() [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.save] method of the file to save
the file permanently somewhere on the filesystem.

A Gentle Introduction

Let’s start with a very basic application that uploads a file to a
specific upload folder and displays a file to the user. Let’s look at the
bootstrapping code for our application:

import os
from flask import Flask, request, redirect, url_for
from werkzeug.utils import secure_filename

UPLOAD_FOLDER = '/path/to/the/uploads'
ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'])

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

So first we need a couple of imports. Most should be straightforward, the
werkzeug.secure_filename() is explained a little bit later. The
UPLOAD_FOLDER is where we will store the uploaded files and the
ALLOWED_EXTENSIONS is the set of allowed file extensions.

Why do we limit the extensions that are allowed? You probably don’t want
your users to be able to upload everything there if the server is directly
sending out the data to the client. That way you can make sure that users
are not able to upload HTML files that would cause XSS problems (see
Cross-Site Scripting (XSS)). Also make sure to disallow .php files if the server
executes them, but who has PHP installed on their server, right? :)

Next the functions that check if an extension is valid and that uploads
the file and redirects the user to the URL for the uploaded file:

def allowed_file(filename):
 return '.' in filename and \
 filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/', methods=['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
 # check if the post request has the file part
 if 'file' not in request.files:
 flash('No file part')
 return redirect(request.url)
 file = request.files['file']
 # if user does not select file, browser also
 # submit a empty part without filename
 if file.filename == '':
 flash('No selected file')
 return redirect(request.url)
 if file and allowed_file(file.filename):
 filename = secure_filename(file.filename)
 file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
 return redirect(url_for('uploaded_file',
 filename=filename))
 return '''
 <!doctype html>
 <title>Upload new File</title>
 <h1>Upload new File</h1>
 <form method=post enctype=multipart/form-data>
 <p><input type=file name=file>
 <input type=submit value=Upload>
 </form>
 '''

So what does that secure_filename() [http://werkzeug.pocoo.org/docs/utils/#werkzeug.utils.secure_filename] function actually do?
Now the problem is that there is that principle called “never trust user
input”. This is also true for the filename of an uploaded file. All
submitted form data can be forged, and filenames can be dangerous. For
the moment just remember: always use that function to secure a filename
before storing it directly on the filesystem.

Information for the Pros

So you’re interested in what that secure_filename() [http://werkzeug.pocoo.org/docs/utils/#werkzeug.utils.secure_filename]
function does and what the problem is if you’re not using it? So just
imagine someone would send the following information as filename to
your application:

filename = "../../../../home/username/.bashrc"

Assuming the number of ../ is correct and you would join this with
the UPLOAD_FOLDER the user might have the ability to modify a file on
the server’s filesystem he or she should not modify. This does require some
knowledge about how the application looks like, but trust me, hackers
are patient :)

Now let’s look how that function works:

>>> secure_filename('../../../../home/username/.bashrc')
'home_username_.bashrc'

Now one last thing is missing: the serving of the uploaded files. In the
upload_file() we redirect the user to
url_for('uploaded_file', filename=filename), that is, /uploads/filename.
So we write the uploaded_file() function to return the file of that name. As
of Flask 0.5 we can use a function that does that for us:

from flask import send_from_directory

@app.route('/uploads/<filename>')
def uploaded_file(filename):
 return send_from_directory(app.config['UPLOAD_FOLDER'],
 filename)

Alternatively you can register uploaded_file as build_only rule and
use the SharedDataMiddleware [http://werkzeug.pocoo.org/docs/middlewares/#werkzeug.wsgi.SharedDataMiddleware]. This also works with
older versions of Flask:

from werkzeug import SharedDataMiddleware
app.add_url_rule('/uploads/<filename>', 'uploaded_file',
 build_only=True)
app.wsgi_app = SharedDataMiddleware(app.wsgi_app, {
 '/uploads': app.config['UPLOAD_FOLDER']
})

If you now run the application everything should work as expected.

Improving Uploads

New in version 0.6.

So how exactly does Flask handle uploads? Well it will store them in the
webserver’s memory if the files are reasonable small otherwise in a
temporary location (as returned by tempfile.gettempdir() [https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir]). But how
do you specify the maximum file size after which an upload is aborted? By
default Flask will happily accept file uploads to an unlimited amount of
memory, but you can limit that by setting the MAX_CONTENT_LENGTH
config key:

from flask import Flask, Request

app = Flask(__name__)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

The code above will limited the maximum allowed payload to 16 megabytes.
If a larger file is transmitted, Flask will raise an
RequestEntityTooLarge [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.RequestEntityTooLarge] exception.

This feature was added in Flask 0.6 but can be achieved in older versions
as well by subclassing the request object. For more information on that
consult the Werkzeug documentation on file handling.

Upload Progress Bars

A while ago many developers had the idea to read the incoming file in
small chunks and store the upload progress in the database to be able to
poll the progress with JavaScript from the client. Long story short: the
client asks the server every 5 seconds how much it has transmitted
already. Do you realize the irony? The client is asking for something it
should already know.

An Easier Solution

Now there are better solutions that work faster and are more reliable. There
are JavaScript libraries like jQuery [https://jquery.com/] that have form plugins to ease the
construction of progress bar.

Because the common pattern for file uploads exists almost unchanged in all
applications dealing with uploads, there is also a Flask extension called
Flask-Uploads [http://pythonhosted.org/Flask-Uploads/] that implements a full fledged upload mechanism with white and
blacklisting of extensions and more.

Caching

When your application runs slow, throw some caches in. Well, at least
it’s the easiest way to speed up things. What does a cache do? Say you
have a function that takes some time to complete but the results would
still be good enough if they were 5 minutes old. So then the idea is that
you actually put the result of that calculation into a cache for some
time.

Flask itself does not provide caching for you, but Werkzeug, one of the
libraries it is based on, has some very basic cache support. It supports
multiple cache backends, normally you want to use a memcached server.

Setting up a Cache

You create a cache object once and keep it around, similar to how
Flask objects are created. If you are using the
development server you can create a
SimpleCache [http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.SimpleCache] object, that one is a simple
cache that keeps the item stored in the memory of the Python interpreter:

from werkzeug.contrib.cache import SimpleCache
cache = SimpleCache()

If you want to use memcached, make sure to have one of the memcache modules
supported (you get them from PyPI [https://pypi.python.org/pypi]) and a
memcached server running somewhere. This is how you connect to such an
memcached server then:

from werkzeug.contrib.cache import MemcachedCache
cache = MemcachedCache(['127.0.0.1:11211'])

If you are using App Engine, you can connect to the App Engine memcache
server easily:

from werkzeug.contrib.cache import GAEMemcachedCache
cache = GAEMemcachedCache()

Using a Cache

Now how can one use such a cache? There are two very important
operations: get() [http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.get] and
set() [http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.set]. This is how to use them:

To get an item from the cache call
get() [http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.get] with a string as key name.
If something is in the cache, it is returned. Otherwise that function
will return None:

rv = cache.get('my-item')

To add items to the cache, use the set() [http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.set]
method instead. The first argument is the key and the second the value
that should be set. Also a timeout can be provided after which the cache
will automatically remove item.

Here a full example how this looks like normally:

def get_my_item():
 rv = cache.get('my-item')
 if rv is None:
 rv = calculate_value()
 cache.set('my-item', rv, timeout=5 * 60)
 return rv

View Decorators

Python has a really interesting feature called function decorators. This
allows some really neat things for web applications. Because each view in
Flask is a function, decorators can be used to inject additional
functionality to one or more functions. The route()
decorator is the one you probably used already. But there are use cases
for implementing your own decorator. For instance, imagine you have a
view that should only be used by people that are logged in. If a user
goes to the site and is not logged in, they should be redirected to the
login page. This is a good example of a use case where a decorator is an
excellent solution.

Login Required Decorator

So let’s implement such a decorator. A decorator is a function that
wraps and replaces another function. Since the original function is
replaced, you need to remember to copy the original function’s information
to the new function. Use functools.wraps() [https://docs.python.org/3/library/functools.html#functools.wraps] to handle this for you.

This example assumes that the login page is called 'login' and that
the current user is stored in g.user and is None if there is no-one
logged in.

from functools import wraps
from flask import g, request, redirect, url_for

def login_required(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 if g.user is None:
 return redirect(url_for('login', next=request.url))
 return f(*args, **kwargs)
 return decorated_function

To use the decorator, apply it as innermost decorator to a view function.
When applying further decorators, always remember
that the route() decorator is the outermost.

@app.route('/secret_page')
@login_required
def secret_page():
 pass

Note

The next value will exist in request.args after a GET request for
the login page. You’ll have to pass it along when sending the POST request
from the login form. You can do this with a hidden input tag, then retrieve it
from request.form when logging the user in.

<input type="hidden" value="{{ request.args.get('next', '') }}"/>

Caching Decorator

Imagine you have a view function that does an expensive calculation and
because of that you would like to cache the generated results for a
certain amount of time. A decorator would be nice for that. We’re
assuming you have set up a cache like mentioned in Caching.

Here is an example cache function. It generates the cache key from a
specific prefix (actually a format string) and the current path of the
request. Notice that we are using a function that first creates the
decorator that then decorates the function. Sounds awful? Unfortunately
it is a little bit more complex, but the code should still be
straightforward to read.

The decorated function will then work as follows

	get the unique cache key for the current request base on the current
path.

	get the value for that key from the cache. If the cache returned
something we will return that value.

	otherwise the original function is called and the return value is
stored in the cache for the timeout provided (by default 5 minutes).

Here the code:

from functools import wraps
from flask import request

def cached(timeout=5 * 60, key='view/%s'):
 def decorator(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 cache_key = key % request.path
 rv = cache.get(cache_key)
 if rv is not None:
 return rv
 rv = f(*args, **kwargs)
 cache.set(cache_key, rv, timeout=timeout)
 return rv
 return decorated_function
 return decorator

Notice that this assumes an instantiated cache object is available, see
Caching for more information.

Templating Decorator

A common pattern invented by the TurboGears guys a while back is a
templating decorator. The idea of that decorator is that you return a
dictionary with the values passed to the template from the view function
and the template is automatically rendered. With that, the following
three examples do exactly the same:

@app.route('/')
def index():
 return render_template('index.html', value=42)

@app.route('/')
@templated('index.html')
def index():
 return dict(value=42)

@app.route('/')
@templated()
def index():
 return dict(value=42)

As you can see, if no template name is provided it will use the endpoint
of the URL map with dots converted to slashes + '.html'. Otherwise
the provided template name is used. When the decorated function returns,
the dictionary returned is passed to the template rendering function. If
None is returned, an empty dictionary is assumed, if something else than
a dictionary is returned we return it from the function unchanged. That
way you can still use the redirect function or return simple strings.

Here is the code for that decorator:

from functools import wraps
from flask import request, render_template

def templated(template=None):
 def decorator(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 template_name = template
 if template_name is None:
 template_name = request.endpoint \
 .replace('.', '/') + '.html'
 ctx = f(*args, **kwargs)
 if ctx is None:
 ctx = {}
 elif not isinstance(ctx, dict):
 return ctx
 return render_template(template_name, **ctx)
 return decorated_function
 return decorator

Endpoint Decorator

When you want to use the werkzeug routing system for more flexibility you
need to map the endpoint as defined in the Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule]
to a view function. This is possible with this decorator. For example:

from flask import Flask
from werkzeug.routing import Rule

app = Flask(__name__)
app.url_map.add(Rule('/', endpoint='index'))

@app.endpoint('index')
def my_index():
 return "Hello world"

Form Validation with WTForms

When you have to work with form data submitted by a browser view, code
quickly becomes very hard to read. There are libraries out there designed
to make this process easier to manage. One of them is WTForms [https://wtforms.readthedocs.io/] which we
will handle here. If you find yourself in the situation of having many
forms, you might want to give it a try.

When you are working with WTForms you have to define your forms as classes
first. I recommend breaking up the application into multiple modules
(Larger Applications) for that and adding a separate module for the
forms.

Getting the most out of WTForms with an Extension

The Flask-WTF [http://pythonhosted.org/Flask-WTF/] extension expands on this pattern and adds a
few little helpers that make working with forms and Flask more
fun. You can get it from PyPI [https://pypi.python.org/pypi/Flask-WTF].

The Forms

This is an example form for a typical registration page:

from wtforms import Form, BooleanField, StringField, PasswordField, validators

class RegistrationForm(Form):
 username = StringField('Username', [validators.Length(min=4, max=25)])
 email = StringField('Email Address', [validators.Length(min=6, max=35)])
 password = PasswordField('New Password', [
 validators.DataRequired(),
 validators.EqualTo('confirm', message='Passwords must match')
])
 confirm = PasswordField('Repeat Password')
 accept_tos = BooleanField('I accept the TOS', [validators.DataRequired()])

In the View

In the view function, the usage of this form looks like this:

@app.route('/register', methods=['GET', 'POST'])
def register():
 form = RegistrationForm(request.form)
 if request.method == 'POST' and form.validate():
 user = User(form.username.data, form.email.data,
 form.password.data)
 db_session.add(user)
 flash('Thanks for registering')
 return redirect(url_for('login'))
 return render_template('register.html', form=form)

Notice we’re implying that the view is using SQLAlchemy here
(SQLAlchemy in Flask), but that’s not a requirement, of course. Adapt
the code as necessary.

Things to remember:

	create the form from the request form value if
the data is submitted via the HTTP POST method and
args if the data is submitted as GET.

	to validate the data, call the validate()
method, which will return True if the data validates, False
otherwise.

	to access individual values from the form, access form.<NAME>.data.

Forms in Templates

Now to the template side. When you pass the form to the templates, you can
easily render them there. Look at the following example template to see
how easy this is. WTForms does half the form generation for us already.
To make it even nicer, we can write a macro that renders a field with
label and a list of errors if there are any.

Here’s an example _formhelpers.html template with such a macro:

{% macro render_field(field) %}
 <dt>{{ field.label }}
 <dd>{{ field(**kwargs)|safe }}
 {% if field.errors %}
 <ul class=errors>
 {% for error in field.errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 </dd>
{% endmacro %}

This macro accepts a couple of keyword arguments that are forwarded to
WTForm’s field function, which renders the field for us. The keyword
arguments will be inserted as HTML attributes. So, for example, you can
call render_field(form.username, class='username') to add a class to
the input element. Note that WTForms returns standard Python unicode
strings, so we have to tell Jinja2 that this data is already HTML-escaped
with the |safe filter.

Here is the register.html template for the function we used above, which
takes advantage of the _formhelpers.html template:

{% from "_formhelpers.html" import render_field %}
<form method=post>
 <dl>
 {{ render_field(form.username) }}
 {{ render_field(form.email) }}
 {{ render_field(form.password) }}
 {{ render_field(form.confirm) }}
 {{ render_field(form.accept_tos) }}
 </dl>
 <p><input type=submit value=Register>
</form>

For more information about WTForms, head over to the WTForms
website [https://wtforms.readthedocs.io/].

Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance
allows you to build a base “skeleton” template that contains all the common
elements of your site and defines blocks that child templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting
with an example.

Base Template

This template, which we’ll call layout.html, defines a simple HTML skeleton
document that you might use for a simple two-column page. It’s the job of
“child” templates to fill the empty blocks with content:

<!doctype html>
<html>
 <head>
 {% block head %}
 <link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
 <title>{% block title %}{% endblock %} - My Webpage</title>
 {% endblock %}
 </head>
 <body>
 <div id="content">{% block content %}{% endblock %}</div>
 <div id="footer">
 {% block footer %}
 © Copyright 2010 by you.
 {% endblock %}
 </div>
 </body>
</html>

In this example, the {% block %} tags define four blocks that child templates
can fill in. All the block tag does is tell the template engine that a
child template may override those portions of the template.

Child Template

A child template might look like this:

{% extends "layout.html" %}
{% block title %}Index{% endblock %}
{% block head %}
 {{ super() }}
 <style type="text/css">
 .important { color: #336699; }
 </style>
{% endblock %}
{% block content %}
 <h1>Index</h1>
 <p class="important">
 Welcome on my awesome homepage.
{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that
this template “extends” another template. When the template system evaluates
this template, first it locates the parent. The extends tag must be the
first tag in the template. To render the contents of a block defined in
the parent template, use {{ super() }}.

Message Flashing

Good applications and user interfaces are all about feedback. If the user
does not get enough feedback they will probably end up hating the
application. Flask provides a really simple way to give feedback to a
user with the flashing system. The flashing system basically makes it
possible to record a message at the end of a request and access it next
request and only next request. This is usually combined with a layout
template that does this. Note that browsers and sometimes web servers enforce
a limit on cookie sizes. This means that flashing messages that are too
large for session cookies causes message flashing to fail silently.

Simple Flashing

So here is a full example:

from flask import Flask, flash, redirect, render_template, \
 request, url_for

app = Flask(__name__)
app.secret_key = 'some_secret'

@app.route('/')
def index():
 return render_template('index.html')

@app.route('/login', methods=['GET', 'POST'])
def login():
 error = None
 if request.method == 'POST':
 if request.form['username'] != 'admin' or \
 request.form['password'] != 'secret':
 error = 'Invalid credentials'
 else:
 flash('You were successfully logged in')
 return redirect(url_for('index'))
 return render_template('login.html', error=error)

And here is the layout.html template which does the magic:

<!doctype html>
<title>My Application</title>
{% with messages = get_flashed_messages() %}
 {% if messages %}
 <ul class=flashes>
 {% for message in messages %}
 {{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}
{% block body %}{% endblock %}

Here is the index.html template which inherits from layout.html:

{% extends "layout.html" %}
{% block body %}
 <h1>Overview</h1>
 <p>Do you want to log in?
{% endblock %}

And here is the login.html template which also inherits from
layout.html:

{% extends "layout.html" %}
{% block body %}
 <h1>Login</h1>
 {% if error %}
 <p class=error>Error: {{ error }}
 {% endif %}
 <form method=post>
 <dl>
 <dt>Username:
 <dd><input type=text name=username value="{{
 request.form.username }}">
 <dt>Password:
 <dd><input type=password name=password>
 </dl>
 <p><input type=submit value=Login>
 </form>
{% endblock %}

Flashing With Categories

New in version 0.3.

It is also possible to provide categories when flashing a message. The
default category if nothing is provided is 'message'. Alternative
categories can be used to give the user better feedback. For example
error messages could be displayed with a red background.

To flash a message with a different category, just use the second argument
to the flash() function:

flash(u'Invalid password provided', 'error')

Inside the template you then have to tell the
get_flashed_messages() function to also return the
categories. The loop looks slightly different in that situation then:

{% with messages = get_flashed_messages(with_categories=true) %}
 {% if messages %}
 <ul class=flashes>
 {% for category, message in messages %}
 <li class="{{ category }}">{{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}

This is just one example of how to render these flashed messages. One
might also use the category to add a prefix such as
Error: to the message.

Filtering Flash Messages

New in version 0.9.

Optionally you can pass a list of categories which filters the results of
get_flashed_messages(). This is useful if you wish to
render each category in a separate block.

{% with errors = get_flashed_messages(category_filter=["error"]) %}
{% if errors %}
<div class="alert-message block-message error">
 ×

 {%- for msg in errors %}
 {{ msg }}
 {% endfor -%}

</div>
{% endif %}
{% endwith %}

AJAX with jQuery

jQuery [http://jquery.com/] is a small JavaScript library commonly used to simplify working
with the DOM and JavaScript in general. It is the perfect tool to make
web applications more dynamic by exchanging JSON between server and
client.

JSON itself is a very lightweight transport format, very similar to how
Python primitives (numbers, strings, dicts and lists) look like which is
widely supported and very easy to parse. It became popular a few years
ago and quickly replaced XML as transport format in web applications.

Loading jQuery

In order to use jQuery, you have to download it first and place it in the
static folder of your application and then ensure it’s loaded. Ideally
you have a layout template that is used for all pages where you just have
to add a script statement to the bottom of your <body> to load jQuery:

<script type=text/javascript src="{{
 url_for('static', filename='jquery.js') }}"></script>

Another method is using Google’s AJAX Libraries API [https://developers.google.com/speed/libraries/devguide] to load jQuery:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="{{
 url_for('static', filename='jquery.js') }}">\x3C/script>')</script>

In this case you have to put jQuery into your static folder as a fallback, but it will
first try to load it directly from Google. This has the advantage that your
website will probably load faster for users if they went to at least one
other website before using the same jQuery version from Google because it
will already be in the browser cache.

Where is My Site?

Do you know where your application is? If you are developing the answer
is quite simple: it’s on localhost port something and directly on the root
of that server. But what if you later decide to move your application to
a different location? For example to http://example.com/myapp? On
the server side this never was a problem because we were using the handy
url_for() function that could answer that question for
us, but if we are using jQuery we should not hardcode the path to
the application but make that dynamic, so how can we do that?

A simple method would be to add a script tag to our page that sets a
global variable to the prefix to the root of the application. Something
like this:

<script type=text/javascript>
 $SCRIPT_ROOT = {{ request.script_root|tojson|safe }};
</script>

The |safe is necessary in Flask before 0.10 so that Jinja does not
escape the JSON encoded string with HTML rules. Usually this would be
necessary, but we are inside a script block here where different rules
apply.

Information for Pros

In HTML the script tag is declared CDATA which means that entities
will not be parsed. Everything until </script> is handled as script.
This also means that there must never be any </ between the script
tags. |tojson is kind enough to do the right thing here and
escape slashes for you ({{ "</script>"|tojson|safe }} is rendered as
"<\/script>").

In Flask 0.10 it goes a step further and escapes all HTML tags with
unicode escapes. This makes it possible for Flask to automatically
mark the result as HTML safe.

JSON View Functions

Now let’s create a server side function that accepts two URL arguments of
numbers which should be added together and then sent back to the
application in a JSON object. This is a really ridiculous example and is
something you usually would do on the client side alone, but a simple
example that shows how you would use jQuery and Flask nonetheless:

from flask import Flask, jsonify, render_template, request
app = Flask(__name__)

@app.route('/_add_numbers')
def add_numbers():
 a = request.args.get('a', 0, type=int)
 b = request.args.get('b', 0, type=int)
 return jsonify(result=a + b)

@app.route('/')
def index():
 return render_template('index.html')

As you can see I also added an index method here that renders a
template. This template will load jQuery as above and have a little form
we can add two numbers and a link to trigger the function on the server
side.

Note that we are using the get() [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict.get] method here
which will never fail. If the key is missing a default value (here 0)
is returned. Furthermore it can convert values to a specific type (like
in our case int). This is especially handy for code that is
triggered by a script (APIs, JavaScript etc.) because you don’t need
special error reporting in that case.

The HTML

Your index.html template either has to extend a layout.html template with
jQuery loaded and the $SCRIPT_ROOT variable set, or do that on the top.
Here’s the HTML code needed for our little application (index.html).
Notice that we also drop the script directly into the HTML here. It is
usually a better idea to have that in a separate script file:

<script type=text/javascript>
 $(function() {
 $('a#calculate').bind('click', function() {
 $.getJSON($SCRIPT_ROOT + '/_add_numbers', {
 a: $('input[name="a"]').val(),
 b: $('input[name="b"]').val()
 }, function(data) {
 $("#result").text(data.result);
 });
 return false;
 });
 });
</script>
<h1>jQuery Example</h1>
<p><input type=text size=5 name=a> +
 <input type=text size=5 name=b> =
 ?
<p>calculate server side

I won’t go into detail here about how jQuery works, just a very quick
explanation of the little bit of code above:

	$(function() { ... }) specifies code that should run once the
browser is done loading the basic parts of the page.

	$('selector') selects an element and lets you operate on it.

	element.bind('event', func) specifies a function that should run
when the user clicked on the element. If that function returns
false, the default behavior will not kick in (in this case, navigate
to the # URL).

	$.getJSON(url, data, func) sends a GET request to url and will
send the contents of the data object as query parameters. Once the
data arrived, it will call the given function with the return value as
argument. Note that we can use the $SCRIPT_ROOT variable here that
we set earlier.

If you don’t get the whole picture, download the sourcecode
for this example [https://github.com/pallets/flask/tree/master/examples/jqueryexample]
from GitHub.

Custom Error Pages

Flask comes with a handy abort() function that aborts a
request with an HTTP error code early. It will also provide a plain black
and white error page for you with a basic description, but nothing fancy.

Depending on the error code it is less or more likely for the user to
actually see such an error.

Common Error Codes

The following error codes are some that are often displayed to the user,
even if the application behaves correctly:

	404 Not Found

	The good old “chap, you made a mistake typing that URL” message. So
common that even novices to the internet know that 404 means: damn,
the thing I was looking for is not there. It’s a very good idea to
make sure there is actually something useful on a 404 page, at least a
link back to the index.

	403 Forbidden

	If you have some kind of access control on your website, you will have
to send a 403 code for disallowed resources. So make sure the user
is not lost when they try to access a forbidden resource.

	410 Gone

	Did you know that there the “404 Not Found” has a brother named “410
Gone”? Few people actually implement that, but the idea is that
resources that previously existed and got deleted answer with 410
instead of 404. If you are not deleting documents permanently from
the database but just mark them as deleted, do the user a favour and
use the 410 code instead and display a message that what they were
looking for was deleted for all eternity.

	500 Internal Server Error

	Usually happens on programming errors or if the server is overloaded.
A terribly good idea is to have a nice page there, because your
application will fail sooner or later (see also:
Application Errors).

Error Handlers

An error handler is a function, just like a view function, but it is
called when an error happens and is passed that error. The error is most
likely a HTTPException [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException], but in one case it
can be a different error: a handler for internal server errors will be
passed other exception instances as well if they are uncaught.

An error handler is registered with the errorhandler()
decorator and the error code of the exception. Keep in mind that Flask
will not set the error code for you, so make sure to also provide the
HTTP status code when returning a response.

Please note that if you add an error handler for “500 Internal Server
Error”, Flask will not trigger it if it’s running in Debug mode.

Here an example implementation for a “404 Page Not Found” exception:

from flask import render_template

@app.errorhandler(404)
def page_not_found(e):
 return render_template('404.html'), 404

An example template might be this:

{% extends "layout.html" %}
{% block title %}Page Not Found{% endblock %}
{% block body %}
 <h1>Page Not Found</h1>
 <p>What you were looking for is just not there.
 <p>go somewhere nice
{% endblock %}

Lazily Loading Views

Flask is usually used with the decorators. Decorators are simple and you
have the URL right next to the function that is called for that specific
URL. However there is a downside to this approach: it means all your code
that uses decorators has to be imported upfront or Flask will never
actually find your function.

This can be a problem if your application has to import quick. It might
have to do that on systems like Google’s App Engine or other systems. So
if you suddenly notice that your application outgrows this approach you
can fall back to a centralized URL mapping.

The system that enables having a central URL map is the
add_url_rule() function. Instead of using decorators,
you have a file that sets up the application with all URLs.

Converting to Centralized URL Map

Imagine the current application looks somewhat like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
 pass

@app.route('/user/<username>')
def user(username):
 pass

Then, with the centralized approach you would have one file with the views
(views.py) but without any decorator:

def index():
 pass

def user(username):
 pass

And then a file that sets up an application which maps the functions to
URLs:

from flask import Flask
from yourapplication import views
app = Flask(__name__)
app.add_url_rule('/', view_func=views.index)
app.add_url_rule('/user/<username>', view_func=views.user)

Loading Late

So far we only split up the views and the routing, but the module is still
loaded upfront. The trick is to actually load the view function as needed.
This can be accomplished with a helper class that behaves just like a
function but internally imports the real function on first use:

from werkzeug import import_string, cached_property

class LazyView(object):

 def __init__(self, import_name):
 self.__module__, self.__name__ = import_name.rsplit('.', 1)
 self.import_name = import_name

 @cached_property
 def view(self):
 return import_string(self.import_name)

 def __call__(self, *args, **kwargs):
 return self.view(*args, **kwargs)

What’s important here is is that __module__ and __name__ are properly
set. This is used by Flask internally to figure out how to name the
URL rules in case you don’t provide a name for the rule yourself.

Then you can define your central place to combine the views like this:

from flask import Flask
from yourapplication.helpers import LazyView
app = Flask(__name__)
app.add_url_rule('/',
 view_func=LazyView('yourapplication.views.index'))
app.add_url_rule('/user/<username>',
 view_func=LazyView('yourapplication.views.user'))

You can further optimize this in terms of amount of keystrokes needed to
write this by having a function that calls into
add_url_rule() by prefixing a string with the project
name and a dot, and by wrapping view_func in a LazyView as needed.

def url(import_name, url_rules=[], **options):
 view = LazyView('yourapplication.' + import_name)
 for url_rule in url_rules:
 app.add_url_rule(url_rule, view_func=view, **options)

add a single route to the index view
url('views.index', ['/'])

add two routes to a single function endpoint
url_rules = ['/user/','/user/<username>']
url('views.user', url_rules)

One thing to keep in mind is that before and after request handlers have
to be in a file that is imported upfront to work properly on the first
request. The same goes for any kind of remaining decorator.

MongoKit in Flask

Using a document database rather than a full DBMS gets more common these days.
This pattern shows how to use MongoKit, a document mapper library, to
integrate with MongoDB.

This pattern requires a running MongoDB server and the MongoKit library
installed.

There are two very common ways to use MongoKit. I will outline each of them
here:

Declarative

The default behavior of MongoKit is the declarative one that is based on
common ideas from Django or the SQLAlchemy declarative extension.

Here an example app.py module for your application:

from flask import Flask
from mongokit import Connection, Document

configuration
MONGODB_HOST = 'localhost'
MONGODB_PORT = 27017

create the little application object
app = Flask(__name__)
app.config.from_object(__name__)

connect to the database
connection = Connection(app.config['MONGODB_HOST'],
 app.config['MONGODB_PORT'])

To define your models, just subclass the Document class that is imported
from MongoKit. If you’ve seen the SQLAlchemy pattern you may wonder why we do
not have a session and even do not define a init_db function here. On the
one hand, MongoKit does not have something like a session. This sometimes
makes it more to type but also makes it blazingly fast. On the other hand,
MongoDB is schemaless. This means you can modify the data structure from one
insert query to the next without any problem. MongoKit is just schemaless
too, but implements some validation to ensure data integrity.

Here is an example document (put this also into app.py, e.g.):

from mongokit import ValidationError

def max_length(length):
 def validate(value):
 if len(value) <= length:
 return True
 # must have %s in error format string to have mongokit place key in there
 raise ValidationError('%s must be at most {} characters long'.format(length))
 return validate

class User(Document):
 structure = {
 'name': unicode,
 'email': unicode,
 }
 validators = {
 'name': max_length(50),
 'email': max_length(120)
 }
 use_dot_notation = True
 def __repr__(self):
 return '<User %r>' % (self.name)

register the User document with our current connection
connection.register([User])

This example shows you how to define your schema (named structure), a
validator for the maximum character length and uses a special MongoKit feature
called use_dot_notation. Per default MongoKit behaves like a python
dictionary but with use_dot_notation set to True you can use your
documents like you use models in nearly any other ORM by using dots to
separate between attributes.

You can insert entries into the database like this:

>>> from yourapplication.database import connection
>>> from yourapplication.models import User
>>> collection = connection['test'].users
>>> user = collection.User()
>>> user['name'] = u'admin'
>>> user['email'] = u'admin@localhost'
>>> user.save()

Note that MongoKit is kinda strict with used column types, you must not use a
common str type for either name or email but unicode.

Querying is simple as well:

>>> list(collection.User.find())
[<User u'admin'>]
>>> collection.User.find_one({'name': u'admin'})
<User u'admin'>

PyMongo Compatibility Layer

If you just want to use PyMongo, you can do that with MongoKit as well. You
may use this process if you need the best performance to get. Note that this
example does not show how to couple it with Flask, see the above MongoKit code
for examples:

from MongoKit import Connection

connection = Connection()

To insert data you can use the insert method. We have to get a
collection first, this is somewhat the same as a table in the SQL world.

>>> collection = connection['test'].users
>>> user = {'name': u'admin', 'email': u'admin@localhost'}
>>> collection.insert(user)

MongoKit will automatically commit for us.

To query your database, you use the collection directly:

>>> list(collection.find())
[{u'_id': ObjectId('4c271729e13823182f000000'), u'name': u'admin', u'email': u'admin@localhost'}]
>>> collection.find_one({'name': u'admin'})
{u'_id': ObjectId('4c271729e13823182f000000'), u'name': u'admin', u'email': u'admin@localhost'}

These results are also dict-like objects:

>>> r = collection.find_one({'name': u'admin'})
>>> r['email']
u'admin@localhost'

For more information about MongoKit, head over to the
website [https://github.com/namlook/mongokit].

Adding a favicon

A “favicon” is an icon used by browsers for tabs and bookmarks. This helps
to distinguish your website and to give it a unique brand.

A common question is how to add a favicon to a Flask application. First, of
course, you need an icon. It should be 16 × 16 pixels and in the ICO file
format. This is not a requirement but a de-facto standard supported by all
relevant browsers. Put the icon in your static directory as
favicon.ico.

Now, to get browsers to find your icon, the correct way is to add a link
tag in your HTML. So, for example:

<link rel="shortcut icon" href="{{ url_for('static', filename='favicon.ico') }}">

That’s all you need for most browsers, however some really old ones do not
support this standard. The old de-facto standard is to serve this file,
with this name, at the website root. If your application is not mounted at
the root path of the domain you either need to configure the web server to
serve the icon at the root or if you can’t do that you’re out of luck. If
however your application is the root you can simply route a redirect:

app.add_url_rule('/favicon.ico',
 redirect_to=url_for('static', filename='favicon.ico'))

If you want to save the extra redirect request you can also write a view
using send_from_directory():

import os
from flask import send_from_directory

@app.route('/favicon.ico')
def favicon():
 return send_from_directory(os.path.join(app.root_path, 'static'),
 'favicon.ico', mimetype='image/vnd.microsoft.icon')

We can leave out the explicit mimetype and it will be guessed, but we may
as well specify it to avoid the extra guessing, as it will always be the
same.

The above will serve the icon via your application and if possible it’s
better to configure your dedicated web server to serve it; refer to the
web server’s documentation.

See also

	The Favicon [http://en.wikipedia.org/wiki/Favicon] article on
Wikipedia

Streaming Contents

Sometimes you want to send an enormous amount of data to the client, much
more than you want to keep in memory. When you are generating the data on
the fly though, how do you send that back to the client without the
roundtrip to the filesystem?

The answer is by using generators and direct responses.

Basic Usage

This is a basic view function that generates a lot of CSV data on the fly.
The trick is to have an inner function that uses a generator to generate
data and to then invoke that function and pass it to a response object:

from flask import Response

@app.route('/large.csv')
def generate_large_csv():
 def generate():
 for row in iter_all_rows():
 yield ','.join(row) + '\n'
 return Response(generate(), mimetype='text/csv')

Each yield expression is directly sent to the browser. Note though
that some WSGI middlewares might break streaming, so be careful there in
debug environments with profilers and other things you might have enabled.

Streaming from Templates

The Jinja2 template engine also supports rendering templates piece by
piece. This functionality is not directly exposed by Flask because it is
quite uncommon, but you can easily do it yourself:

from flask import Response

def stream_template(template_name, **context):
 app.update_template_context(context)
 t = app.jinja_env.get_template(template_name)
 rv = t.stream(context)
 rv.enable_buffering(5)
 return rv

@app.route('/my-large-page.html')
def render_large_template():
 rows = iter_all_rows()
 return Response(stream_template('the_template.html', rows=rows))

The trick here is to get the template object from the Jinja2 environment
on the application and to call stream() [http://jinja.pocoo.org/docs/api/#jinja2.Template.stream] instead of
render() [http://jinja.pocoo.org/docs/api/#jinja2.Template.render] which returns a stream object instead of a
string. Since we’re bypassing the Flask template render functions and
using the template object itself we have to make sure to update the render
context ourselves by calling update_template_context().
The template is then evaluated as the stream is iterated over. Since each
time you do a yield the server will flush the content to the client you
might want to buffer up a few items in the template which you can do with
rv.enable_buffering(size). 5 is a sane default.

Streaming with Context

New in version 0.9.

Note that when you stream data, the request context is already gone the
moment the function executes. Flask 0.9 provides you with a helper that
can keep the request context around during the execution of the
generator:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():
 def generate():
 yield 'Hello '
 yield request.args['name']
 yield '!'
 return Response(stream_with_context(generate()))

Without the stream_with_context() function you would get a
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] at that point.

Deferred Request Callbacks

One of the design principles of Flask is that response objects are created
and passed down a chain of potential callbacks that can modify them or
replace them. When the request handling starts, there is no response
object yet. It is created as necessary either by a view function or by
some other component in the system.

But what happens if you want to modify the response at a point where the
response does not exist yet? A common example for that would be a
before-request function that wants to set a cookie on the response object.

One way is to avoid the situation. Very often that is possible. For
instance you can try to move that logic into an after-request callback
instead. Sometimes however moving that code there is just not a very
pleasant experience or makes code look very awkward.

As an alternative possibility you can attach a bunch of callback functions
to the g object and call them at the end of the request.
This way you can defer code execution from anywhere in the application.

The Decorator

The following decorator is the key. It registers a function on a list on
the g object:

from flask import g

def after_this_request(f):
 if not hasattr(g, 'after_request_callbacks'):
 g.after_request_callbacks = []
 g.after_request_callbacks.append(f)
 return f

Calling the Deferred

Now you can use the after_this_request decorator to mark a function to
be called at the end of the request. But we still need to call them. For
this the following function needs to be registered as
after_request() callback:

@app.after_request
def call_after_request_callbacks(response):
 for callback in getattr(g, 'after_request_callbacks', ()):
 callback(response)
 return response

A Practical Example

At any time during a request, we can register a function to be called at the
end of the request. For example you can remember the current language of the
user in a cookie in the before-request function:

from flask import request

@app.before_request
def detect_user_language():
 language = request.cookies.get('user_lang')
 if language is None:
 language = guess_language_from_request()
 @after_this_request
 def remember_language(response):
 response.set_cookie('user_lang', language)
 g.language = language

Adding HTTP Method Overrides

Some HTTP proxies do not support arbitrary HTTP methods or newer HTTP
methods (such as PATCH). In that case it’s possible to “proxy” HTTP
methods through another HTTP method in total violation of the protocol.

The way this works is by letting the client do an HTTP POST request and
set the X-HTTP-Method-Override header and set the value to the
intended HTTP method (such as PATCH).

This can easily be accomplished with an HTTP middleware:

class HTTPMethodOverrideMiddleware(object):
 allowed_methods = frozenset([
 'GET',
 'HEAD',
 'POST',
 'DELETE',
 'PUT',
 'PATCH',
 'OPTIONS'
])
 bodyless_methods = frozenset(['GET', 'HEAD', 'OPTIONS', 'DELETE'])

 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 method = environ.get('HTTP_X_HTTP_METHOD_OVERRIDE', '').upper()
 if method in self.allowed_methods:
 method = method.encode('ascii', 'replace')
 environ['REQUEST_METHOD'] = method
 if method in self.bodyless_methods:
 environ['CONTENT_LENGTH'] = '0'
 return self.app(environ, start_response)

To use this with Flask this is all that is necessary:

from flask import Flask

app = Flask(__name__)
app.wsgi_app = HTTPMethodOverrideMiddleware(app.wsgi_app)

Request Content Checksums

Various pieces of code can consume the request data and preprocess it.
For instance JSON data ends up on the request object already read and
processed, form data ends up there as well but goes through a different
code path. This seems inconvenient when you want to calculate the
checksum of the incoming request data. This is necessary sometimes for
some APIs.

Fortunately this is however very simple to change by wrapping the input
stream.

The following example calculates the SHA1 checksum of the incoming data as
it gets read and stores it in the WSGI environment:

import hashlib

class ChecksumCalcStream(object):

 def __init__(self, stream):
 self._stream = stream
 self._hash = hashlib.sha1()

 def read(self, bytes):
 rv = self._stream.read(bytes)
 self._hash.update(rv)
 return rv

 def readline(self, size_hint):
 rv = self._stream.readline(size_hint)
 self._hash.update(rv)
 return rv

def generate_checksum(request):
 env = request.environ
 stream = ChecksumCalcStream(env['wsgi.input'])
 env['wsgi.input'] = stream
 return stream._hash

To use this, all you need to do is to hook the calculating stream in
before the request starts consuming data. (Eg: be careful accessing
request.form or anything of that nature. before_request_handlers
for instance should be careful not to access it).

Example usage:

@app.route('/special-api', methods=['POST'])
def special_api():
 hash = generate_checksum(request)
 # Accessing this parses the input stream
 files = request.files
 # At this point the hash is fully constructed.
 checksum = hash.hexdigest()
 return 'Hash was: %s' % checksum

Celery Based Background Tasks

Celery is a task queue for Python with batteries included. It used to
have a Flask integration but it became unnecessary after some
restructuring of the internals of Celery with Version 3. This guide fills
in the blanks in how to properly use Celery with Flask but assumes that
you generally already read the First Steps with Celery [http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html]
guide in the official Celery documentation.

Installing Celery

Celery is on the Python Package Index (PyPI), so it can be installed with
standard Python tools like pip or easy_install:

$ pip install celery

Configuring Celery

The first thing you need is a Celery instance, this is called the celery
application. It serves the same purpose as the Flask
object in Flask, just for Celery. Since this instance is used as the
entry-point for everything you want to do in Celery, like creating tasks
and managing workers, it must be possible for other modules to import it.

For instance you can place this in a tasks module. While you can use
Celery without any reconfiguration with Flask, it becomes a bit nicer by
subclassing tasks and adding support for Flask’s application contexts and
hooking it up with the Flask configuration.

This is all that is necessary to properly integrate Celery with Flask:

from celery import Celery

def make_celery(app):
 celery = Celery(app.import_name, backend=app.config['CELERY_RESULT_BACKEND'],
 broker=app.config['CELERY_BROKER_URL'])
 celery.conf.update(app.config)
 TaskBase = celery.Task
 class ContextTask(TaskBase):
 abstract = True
 def __call__(self, *args, **kwargs):
 with app.app_context():
 return TaskBase.__call__(self, *args, **kwargs)
 celery.Task = ContextTask
 return celery

The function creates a new Celery object, configures it with the broker
from the application config, updates the rest of the Celery config from
the Flask config and then creates a subclass of the task that wraps the
task execution in an application context.

Minimal Example

With what we have above this is the minimal example of using Celery with
Flask:

from flask import Flask

flask_app = Flask(__name__)
flask_app.config.update(
 CELERY_BROKER_URL='redis://localhost:6379',
 CELERY_RESULT_BACKEND='redis://localhost:6379'
)
celery = make_celery(flask_app)

@celery.task()
def add_together(a, b):
 return a + b

This task can now be called in the background:

>>> result = add_together.delay(23, 42)
>>> result.wait()
65

Running the Celery Worker

Now if you jumped in and already executed the above code you will be
disappointed to learn that your .wait() will never actually return.
That’s because you also need to run celery. You can do that by running
celery as a worker:

$ celery -A your_application.celery worker

The your_application string has to point to your application’s package
or module that creates the celery object.

Subclassing Flask

The Flask class is designed for subclassing.

For example, you may want to override how request parameters are handled to preserve their order:

from flask import Flask, Request
from werkzeug.datastructures import ImmutableOrderedMultiDict
class MyRequest(Request):
 """Request subclass to override request parameter storage"""
 parameter_storage_class = ImmutableOrderedMultiDict
class MyFlask(Flask):
 """Flask subclass using the custom request class"""
 request_class = MyRequest

This is the recommended approach for overriding or augmenting Flask’s internal functionality.

Deployment Options

While lightweight and easy to use, Flask’s built-in server is not suitable
for production as it doesn’t scale well and by default serves only one
request at a time. Some of the options available for properly running Flask in
production are documented here.

If you want to deploy your Flask application to a WSGI server not listed here,
look up the server documentation about how to use a WSGI app with it. Just
remember that your Flask application object is the actual WSGI
application.

Hosted options

	Deploying Flask on Heroku [https://devcenter.heroku.com/articles/getting-started-with-python]

	Deploying Flask on OpenShift [https://developers.openshift.com/en/python-flask.html]

	Deploying Flask on Webfaction [http://flask.pocoo.org/snippets/65/]

	Deploying Flask on Google App Engine [https://github.com/kamalgill/flask-appengine-template]

	Deploying Flask on AWS Elastic Beanstalk [http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html]

	Sharing your Localhost Server with Localtunnel [http://flask.pocoo.org/snippets/89/]

	Deploying on Azure (IIS) [https://azure.microsoft.com/documentation/articles/web-sites-python-configure/]

	Deploying on PythonAnywhere [https://help.pythonanywhere.com/pages/Flask/]

Self-hosted options

	mod_wsgi (Apache)
	Installing mod_wsgi

	Creating a .wsgi file

	Configuring Apache

	Troubleshooting

	Support for Automatic Reloading

	Working with Virtual Environments

	Standalone WSGI Containers
	Gunicorn

	Gevent

	Twisted Web

	Proxy Setups

	uWSGI
	Starting your app with uwsgi

	Configuring nginx

	FastCGI
	Creating a .fcgi file

	Configuring Apache

	Configuring lighttpd

	Configuring nginx

	Running FastCGI Processes

	Debugging

	CGI
	Creating a .cgi file

	Server Setup

mod_wsgi (Apache)

If you are using the Apache [http://httpd.apache.org/] webserver, consider using mod_wsgi [https://github.com/GrahamDumpleton/mod_wsgi].

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to mod_wsgi.

Installing mod_wsgi

If you don’t have mod_wsgi installed yet you have to either install it
using a package manager or compile it yourself. The mod_wsgi
installation instructions [http://modwsgi.readthedocs.io/en/develop/installation.html] cover source installations on UNIX systems.

If you are using Ubuntu/Debian you can apt-get it and activate it as
follows:

apt-get install libapache2-mod-wsgi

If you are using a yum based distribution (Fedora, OpenSUSE, etc..) you
can install it as follows:

yum install mod_wsgi

On FreeBSD install mod_wsgi by compiling the www/mod_wsgi port or by
using pkg_add:

pkg install ap22-mod_wsgi2

If you are using pkgsrc you can install mod_wsgi by compiling the
www/ap2-wsgi package.

If you encounter segfaulting child processes after the first apache
reload you can safely ignore them. Just restart the server.

Creating a .wsgi file

To run your application you need a yourapplication.wsgi file. This file
contains the code mod_wsgi is executing on startup to get the application
object. The object called application in that file is then used as
application.

For most applications the following file should be sufficient:

from yourapplication import app as application

If you don’t have a factory function for application creation but a singleton
instance you can directly import that one as application.

Store that file somewhere that you will find it again (e.g.:
/var/www/yourapplication) and make sure that yourapplication and all
the libraries that are in use are on the python load path. If you don’t
want to install it system wide consider using a virtual python [https://pypi.python.org/pypi/virtualenv]
instance. Keep in mind that you will have to actually install your
application into the virtualenv as well. Alternatively there is the
option to just patch the path in the .wsgi file before the import:

import sys
sys.path.insert(0, '/path/to/the/application')

Configuring Apache

The last thing you have to do is to create an Apache configuration file
for your application. In this example we are telling mod_wsgi to
execute the application under a different user for security reasons:

<VirtualHost *>
 ServerName example.com

 WSGIDaemonProcess yourapplication user=user1 group=group1 threads=5
 WSGIScriptAlias / /var/www/yourapplication/yourapplication.wsgi

 <Directory /var/www/yourapplication>
 WSGIProcessGroup yourapplication
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Note: WSGIDaemonProcess isn’t implemented in Windows and Apache will
refuse to run with the above configuration. On a Windows system, eliminate those lines:

<VirtualHost *>
 ServerName example.com
 WSGIScriptAlias / C:\yourdir\yourapp.wsgi
 <Directory C:\yourdir>
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Note: There have been some changes in access control configuration for Apache 2.4 [http://httpd.apache.org/docs/trunk/upgrading.html].

Most notably, the syntax for directory permissions has changed from httpd 2.2

Order allow,deny
Allow from all

to httpd 2.4 syntax

Require all granted

For more information consult the mod_wsgi documentation [http://modwsgi.readthedocs.io/en/develop/index.html].

Troubleshooting

If your application does not run, follow this guide to troubleshoot:

	Problem: application does not run, errorlog shows SystemExit ignored

	You have an app.run() call in your application file that is not
guarded by an if __name__ == '__main__': condition. Either
remove that run() call from the file and move it
into a separate run.py file or put it into such an if block.

	Problem: application gives permission errors

	Probably caused by your application running as the wrong user. Make
sure the folders the application needs access to have the proper
privileges set and the application runs as the correct user
(user and group parameter to the WSGIDaemonProcess
directive)

	Problem: application dies with an error on print

	Keep in mind that mod_wsgi disallows doing anything with
sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] and sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr]. You can disable this
protection from the config by setting the WSGIRestrictStdout to
off:

WSGIRestrictStdout Off

Alternatively you can also replace the standard out in the .wsgi file
with a different stream:

import sys
sys.stdout = sys.stderr

	Problem: accessing resources gives IO errors

	Your application probably is a single .py file you symlinked into
the site-packages folder. Please be aware that this does not work,
instead you either have to put the folder into the pythonpath the
file is stored in, or convert your application into a package.

The reason for this is that for non-installed packages, the module
filename is used to locate the resources and for symlinks the wrong
filename is picked up.

Support for Automatic Reloading

To help deployment tools you can activate support for automatic
reloading. Whenever something changes the .wsgi file, mod_wsgi will
reload all the daemon processes for us.

For that, just add the following directive to your Directory section:

WSGIScriptReloading On

Working with Virtual Environments

Virtual environments have the advantage that they never install the
required dependencies system wide so you have a better control over what
is used where. If you want to use a virtual environment with mod_wsgi
you have to modify your .wsgi file slightly.

Add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

For Python 3 add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
with open(activate_this) as file_:
 exec(file_.read(), dict(__file__=activate_this))

This sets up the load paths according to the settings of the virtual
environment. Keep in mind that the path has to be absolute.

Standalone WSGI Containers

There are popular servers written in Python that contain WSGI applications and
serve HTTP. These servers stand alone when they run; you can proxy to them
from your web server. Note the section on Proxy Setups if you
run into issues.

Gunicorn

Gunicorn [http://gunicorn.org/] ‘Green Unicorn’ is a WSGI HTTP Server for UNIX. It’s a pre-fork
worker model ported from Ruby’s Unicorn project. It supports both eventlet [http://eventlet.net/]
and greenlet [https://greenlet.readthedocs.io/en/latest/]. Running a Flask application on this server is quite simple:

gunicorn myproject:app

Gunicorn [http://gunicorn.org/] provides many command-line options – see gunicorn -h.
For example, to run a Flask application with 4 worker processes (-w
4) binding to localhost port 4000 (-b 127.0.0.1:4000):

gunicorn -w 4 -b 127.0.0.1:4000 myproject:app

Gevent

Gevent [http://www.gevent.org/] is a coroutine-based Python networking library that uses
greenlet [https://greenlet.readthedocs.io/en/latest/] to provide a high-level synchronous API on top of libev [http://software.schmorp.de/pkg/libev.html]
event loop:

from gevent.wsgi import WSGIServer
from yourapplication import app

http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()

Twisted Web

Twisted Web [https://twistedmatrix.com/trac/wiki/TwistedWeb] is the web server shipped with Twisted [https://twistedmatrix.com/], a mature,
non-blocking event-driven networking library. Twisted Web comes with a
standard WSGI container which can be controlled from the command line using
the twistd utility:

twistd web --wsgi myproject.app

This example will run a Flask application called app from a module named
myproject.

Twisted Web supports many flags and options, and the twistd utility does
as well; see twistd -h and twistd web -h for more information. For
example, to run a Twisted Web server in the foreground, on port 8080, with an
application from myproject:

twistd -n web --port 8080 --wsgi myproject.app

Proxy Setups

If you deploy your application using one of these servers behind an HTTP proxy
you will need to rewrite a few headers in order for the application to work.
The two problematic values in the WSGI environment usually are REMOTE_ADDR
and HTTP_HOST. You can configure your httpd to pass these headers, or you
can fix them in middleware. Werkzeug ships a fixer that will solve some common
setups, but you might want to write your own WSGI middleware for specific
setups.

Here’s a simple nginx configuration which proxies to an application served on
localhost at port 8000, setting appropriate headers:

server {
 listen 80;

 server_name _;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location / {
 proxy_pass http://127.0.0.1:8000/;
 proxy_redirect off;

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

If your httpd is not providing these headers, the most common setup invokes the
host being set from X-Forwarded-Host and the remote address from
X-Forwarded-For:

from werkzeug.contrib.fixers import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app)

Trusting Headers

Please keep in mind that it is a security issue to use such a middleware in
a non-proxy setup because it will blindly trust the incoming headers which
might be forged by malicious clients.

If you want to rewrite the headers from another header, you might want to
use a fixer like this:

class CustomProxyFix(object):

 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 host = environ.get('HTTP_X_FHOST', '')
 if host:
 environ['HTTP_HOST'] = host
 return self.app(environ, start_response)

app.wsgi_app = CustomProxyFix(app.wsgi_app)

uWSGI

uWSGI is a deployment option on servers like nginx [http://nginx.org/], lighttpd [http://www.lighttpd.net/], and
cherokee [http://cherokee-project.com/]; see FastCGI and Standalone WSGI Containers
for other options. To use your WSGI application with uWSGI protocol you will
need a uWSGI server first. uWSGI is both a protocol and an application server;
the application server can serve uWSGI, FastCGI, and HTTP protocols.

The most popular uWSGI server is uwsgi [http://projects.unbit.it/uwsgi/], which we will use for this
guide. Make sure to have it installed to follow along.

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to uWSGI.

Starting your app with uwsgi

uwsgi is designed to operate on WSGI callables found in python modules.

Given a flask application in myapp.py, use the following command:

$ uwsgi -s /tmp/yourapplication.sock --manage-script-name --mount /yourapplication=myapp:app

The --manage-script-name will move the handling of SCRIPT_NAME to uwsgi,
since its smarter about that. It is used together with the --mount directive
which will make requests to /yourapplication be directed to myapp:app.
If your application is accessible at root level, you can use a single /
instead of /yourapplication. myapp refers to the name of the file of
your flask application (without extension) or the module which provides app.
app is the callable inside of your application (usually the line reads
app = Flask(__name__).

If you want to deploy your flask application inside of a virtual environment,
you need to also add --virtualenv /path/to/virtual/environment. You might
also need to add --plugin python or --plugin python3 depending on which
python version you use for your project.

Configuring nginx

A basic flask nginx configuration looks like this:

location = /yourapplication { rewrite ^ /yourapplication/; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {
 include uwsgi_params;
 uwsgi_pass unix:/tmp/yourapplication.sock;
}

This configuration binds the application to /yourapplication. If you want
to have it in the URL root its a bit simpler:

location / { try_files $uri @yourapplication; }
location @yourapplication {
 include uwsgi_params;
 uwsgi_pass unix:/tmp/yourapplication.sock;
}

FastCGI

FastCGI is a deployment option on servers like nginx [http://nginx.org/], lighttpd [http://www.lighttpd.net/], and
cherokee [http://cherokee-project.com/]; see uWSGI and Standalone WSGI Containers
for other options. To use your WSGI application with any of them you will need
a FastCGI server first. The most popular one is flup [https://pypi.python.org/pypi/flup] which we will use for
this guide. Make sure to have it installed to follow along.

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to FastCGI.

Creating a .fcgi file

First you need to create the FastCGI server file. Let’s call it
yourapplication.fcgi:

#!/usr/bin/python
from flup.server.fcgi import WSGIServer
from yourapplication import app

if __name__ == '__main__':
 WSGIServer(app).run()

This is enough for Apache to work, however nginx and older versions of
lighttpd need a socket to be explicitly passed to communicate with the
FastCGI server. For that to work you need to pass the path to the
socket to the WSGIServer:

WSGIServer(application, bindAddress='/path/to/fcgi.sock').run()

The path has to be the exact same path you define in the server
config.

Save the yourapplication.fcgi file somewhere you will find it again.
It makes sense to have that in /var/www/yourapplication or something
similar.

Make sure to set the executable bit on that file so that the servers
can execute it:

chmod +x /var/www/yourapplication/yourapplication.fcgi

Configuring Apache

The example above is good enough for a basic Apache deployment but your
.fcgi file will appear in your application URL e.g.
example.com/yourapplication.fcgi/news/. There are few ways to configure
your application so that yourapplication.fcgi does not appear in the URL.
A preferable way is to use the ScriptAlias and SetHandler configuration
directives to route requests to the FastCGI server. The following example
uses FastCgiServer to start 5 instances of the application which will
handle all incoming requests:

LoadModule fastcgi_module /usr/lib64/httpd/modules/mod_fastcgi.so

FastCgiServer /var/www/html/yourapplication/app.fcgi -idle-timeout 300 -processes 5

<VirtualHost *>
 ServerName webapp1.mydomain.com
 DocumentRoot /var/www/html/yourapplication

 AddHandler fastcgi-script fcgi
 ScriptAlias / /var/www/html/yourapplication/app.fcgi/

 <Location />
 SetHandler fastcgi-script
 </Location>
</VirtualHost>

These processes will be managed by Apache. If you’re using a standalone
FastCGI server, you can use the FastCgiExternalServer directive instead.
Note that in the following the path is not real, it’s simply used as an
identifier to other
directives such as AliasMatch:

FastCgiServer /var/www/html/yourapplication -host 127.0.0.1:3000

If you cannot set ScriptAlias, for example on a shared web host, you can use
WSGI middleware to remove yourapplication.fcgi from the URLs. Set .htaccess:

<IfModule mod_fcgid.c>
 AddHandler fcgid-script .fcgi
 <Files ~ (\.fcgi)>
 SetHandler fcgid-script
 Options +FollowSymLinks +ExecCGI
 </Files>
</IfModule>

<IfModule mod_rewrite.c>
 Options +FollowSymlinks
 RewriteEngine On
 RewriteBase /
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^(.*)$ yourapplication.fcgi/$1 [QSA,L]
</IfModule>

Set yourapplication.fcgi:

#!/usr/bin/python
#: optional path to your local python site-packages folder
import sys
sys.path.insert(0, '<your_local_path>/lib/python2.6/site-packages')

from flup.server.fcgi import WSGIServer
from yourapplication import app

class ScriptNameStripper(object):
 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 environ['SCRIPT_NAME'] = ''
 return self.app(environ, start_response)

app = ScriptNameStripper(app)

if __name__ == '__main__':
 WSGIServer(app).run()

Configuring lighttpd

A basic FastCGI configuration for lighttpd looks like that:

fastcgi.server = ("/yourapplication.fcgi" =>
 ((
 "socket" => "/tmp/yourapplication-fcgi.sock",
 "bin-path" => "/var/www/yourapplication/yourapplication.fcgi",
 "check-local" => "disable",
 "max-procs" => 1
))
)

alias.url = (
 "/static/" => "/path/to/your/static"
)

url.rewrite-once = (
 "^(/static($|/.*))$" => "$1",
 "^(/.*)$" => "/yourapplication.fcgi$1"
)

Remember to enable the FastCGI, alias and rewrite modules. This configuration
binds the application to /yourapplication. If you want the application to
work in the URL root you have to work around a lighttpd bug with the
LighttpdCGIRootFix middleware.

Make sure to apply it only if you are mounting the application the URL
root. Also, see the Lighty docs for more information on FastCGI and Python [http://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModFastCGI] (note that
explicitly passing a socket to run() is no longer necessary).

Configuring nginx

Installing FastCGI applications on nginx is a bit different because by
default no FastCGI parameters are forwarded.

A basic Flask FastCGI configuration for nginx looks like this:

location = /yourapplication { rewrite ^ /yourapplication/ last; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {
 include fastcgi_params;
 fastcgi_split_path_info ^(/yourapplication)(.*)$;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param SCRIPT_NAME $fastcgi_script_name;
 fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;
}

This configuration binds the application to /yourapplication. If you
want to have it in the URL root it’s a bit simpler because you don’t
have to figure out how to calculate PATH_INFO and SCRIPT_NAME:

location / { try_files $uri @yourapplication; }
location @yourapplication {
 include fastcgi_params;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 fastcgi_param SCRIPT_NAME "";
 fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;
}

Running FastCGI Processes

Since nginx and others do not load FastCGI apps, you have to do it by
yourself. Supervisor can manage FastCGI processes. [http://supervisord.org/configuration.html#fcgi-program-x-section-settings]
You can look around for other FastCGI process managers or write a script
to run your .fcgi file at boot, e.g. using a SysV init.d script.
For a temporary solution, you can always run the .fcgi script inside
GNU screen. See man screen for details, and note that this is a
manual solution which does not persist across system restart:

$ screen
$ /var/www/yourapplication/yourapplication.fcgi

Debugging

FastCGI deployments tend to be hard to debug on most web servers. Very
often the only thing the server log tells you is something along the
lines of “premature end of headers”. In order to debug the application
the only thing that can really give you ideas why it breaks is switching
to the correct user and executing the application by hand.

This example assumes your application is called application.fcgi and
that your web server user is www-data:

$ su www-data
$ cd /var/www/yourapplication
$ python application.fcgi
Traceback (most recent call last):
 File "yourapplication.fcgi", line 4, in <module>
ImportError: No module named yourapplication

In this case the error seems to be “yourapplication” not being on the
python path. Common problems are:

	Relative paths being used. Don’t rely on the current working directory.

	The code depending on environment variables that are not set by the
web server.

	Different python interpreters being used.

CGI

If all other deployment methods do not work, CGI will work for sure.
CGI is supported by all major servers but usually has a sub-optimal
performance.

This is also the way you can use a Flask application on Google’s App
Engine [https://developers.google.com/appengine/], where execution happens in a CGI-like environment.

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to CGI / app engine.

With CGI, you will also have to make sure that your code does not contain
any print statements, or that sys.stdout is overridden by something
that doesn’t write into the HTTP response.

Creating a .cgi file

First you need to create the CGI application file. Let’s call it
yourapplication.cgi:

#!/usr/bin/python
from wsgiref.handlers import CGIHandler
from yourapplication import app

CGIHandler().run(app)

Server Setup

Usually there are two ways to configure the server. Either just copy the
.cgi into a cgi-bin (and use mod_rewrite or something similar to
rewrite the URL) or let the server point to the file directly.

In Apache for example you can put something like this into the config:

ScriptAlias /app /path/to/the/application.cgi

On shared webhosting, though, you might not have access to your Apache config.
In this case, a file called .htaccess, sitting in the public directory you want
your app to be available, works too but the ScriptAlias directive won’t
work in that case:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f # Don't interfere with static files
RewriteRule ^(.*)$ /path/to/the/application.cgi/$1 [L]

For more information consult the documentation of your webserver.

Becoming Big

Here are your options when growing your codebase or scaling your application.

Read the Source.

Flask started in part to demonstrate how to build your own framework on top of
existing well-used tools Werkzeug (WSGI) and Jinja (templating), and as it
developed, it became useful to a wide audience. As you grow your codebase,
don’t just use Flask – understand it. Read the source. Flask’s code is
written to be read; its documentation is published so you can use its internal
APIs. Flask sticks to documented APIs in upstream libraries, and documents its
internal utilities so that you can find the hook points needed for your
project.

Hook. Extend.

The API docs are full of available overrides, hook points, and
Signals. You can provide custom classes for things like the request and
response objects. Dig deeper on the APIs you use, and look for the
customizations which are available out of the box in a Flask release. Look for
ways in which your project can be refactored into a collection of utilities and
Flask extensions. Explore the many extensions [http://flask.pocoo.org/extensions/] in the community, and look for patterns to
build your own extensions if you do not find the tools you need.

Subclass.

The Flask class has many methods designed for subclassing. You
can quickly add or customize behavior by subclassing Flask (see
the linked method docs) and using that subclass wherever you instantiate an
application class. This works well with Application Factories. See Subclassing Flask for an example.

Wrap with middleware.

The Application Dispatching chapter shows in detail how to apply middleware. You
can introduce WSGI middleware to wrap your Flask instances and introduce fixes
and changes at the layer between your Flask application and your HTTP
server. Werkzeug includes several middlewares [http://werkzeug.pocoo.org/docs/middlewares/].

Fork.

If none of the above options work, fork Flask. The majority of code of Flask
is within Werkzeug and Jinja2. These libraries do the majority of the work.
Flask is just the paste that glues those together. For every project there is
the point where the underlying framework gets in the way (due to assumptions
the original developers had). This is natural because if this would not be the
case, the framework would be a very complex system to begin with which causes a
steep learning curve and a lot of user frustration.

This is not unique to Flask. Many people use patched and modified
versions of their framework to counter shortcomings. This idea is also
reflected in the license of Flask. You don’t have to contribute any
changes back if you decide to modify the framework.

The downside of forking is of course that Flask extensions will most
likely break because the new framework has a different import name.
Furthermore integrating upstream changes can be a complex process,
depending on the number of changes. Because of that, forking should be
the very last resort.

Scale like a pro.

For many web applications the complexity of the code is less an issue than
the scaling for the number of users or data entries expected. Flask by
itself is only limited in terms of scaling by your application code, the
data store you want to use and the Python implementation and webserver you
are running on.

Scaling well means for example that if you double the amount of servers
you get about twice the performance. Scaling bad means that if you add a
new server the application won’t perform any better or would not even
support a second server.

There is only one limiting factor regarding scaling in Flask which are
the context local proxies. They depend on context which in Flask is
defined as being either a thread, process or greenlet. If your server
uses some kind of concurrency that is not based on threads or greenlets,
Flask will no longer be able to support these global proxies. However the
majority of servers are using either threads, greenlets or separate
processes to achieve concurrency which are all methods well supported by
the underlying Werkzeug library.

Discuss with the community.

The Flask developers keep the framework accessible to users with codebases big
and small. If you find an obstacle in your way, caused by Flask, don’t hesitate
to contact the developers on the mailinglist or IRC channel. The best way for
the Flask and Flask extension developers to improve the tools for larger
applications is getting feedback from users.

API

This part of the documentation covers all the interfaces of Flask. For
parts where Flask depends on external libraries, we document the most
important right here and provide links to the canonical documentation.

Application Object

	
class flask.Flask(import_name, static_path=None, static_url_path=None, static_folder='static', template_folder='templates', instance_path=None, instance_relative_config=False, root_path=None)

	The flask object implements a WSGI application and acts as the central
object. It is passed the name of the module or package of the
application. Once it is created it will act as a central registry for
the view functions, the URL rules, template configuration and much more.

The name of the package is used to resolve resources from inside the
package or the folder the module is contained in depending on if the
package parameter resolves to an actual python package (a folder with
an __init__.py file inside) or a standard module (just a .py file).

For more information about resource loading, see open_resource().

Usually you create a Flask instance in your main module or
in the __init__.py file of your package like this:

from flask import Flask
app = Flask(__name__)

About the First Parameter

The idea of the first parameter is to give Flask an idea of what
belongs to your application. This name is used to find resources
on the filesystem, can be used by extensions to improve debugging
information and a lot more.

So it’s important what you provide there. If you are using a single
module, __name__ is always the correct value. If you however are
using a package, it’s usually recommended to hardcode the name of
your package there.

For example if your application is defined in yourapplication/app.py
you should create it with one of the two versions below:

app = Flask('yourapplication')
app = Flask(__name__.split('.')[0])

Why is that? The application will work even with __name__, thanks
to how resources are looked up. However it will make debugging more
painful. Certain extensions can make assumptions based on the
import name of your application. For example the Flask-SQLAlchemy
extension will look for the code in your application that triggered
an SQL query in debug mode. If the import name is not properly set
up, that debugging information is lost. (For example it would only
pick up SQL queries in yourapplication.app and not
yourapplication.views.frontend)

New in version 0.7: The static_url_path, static_folder, and template_folder
parameters were added.

New in version 0.8: The instance_path and instance_relative_config parameters were
added.

New in version 0.11: The root_path parameter was added.

	Parameters:	
	import_name – the name of the application package

	static_url_path – can be used to specify a different path for the
static files on the web. Defaults to the name
of the static_folder folder.

	static_folder – the folder with static files that should be served
at static_url_path. Defaults to the 'static'
folder in the root path of the application.

	template_folder – the folder that contains the templates that should
be used by the application. Defaults to
'templates' folder in the root path of the
application.

	instance_path – An alternative instance path for the application.
By default the folder 'instance' next to the
package or module is assumed to be the instance
path.

	instance_relative_config – if set to True relative filenames
for loading the config are assumed to
be relative to the instance path instead
of the application root.

	root_path – Flask by default will automatically calculate the path
to the root of the application. In certain situations
this cannot be achieved (for instance if the package
is a Python 3 namespace package) and needs to be
manually defined.

	
add_template_filter(f, name=None)

	Register a custom template filter. Works exactly like the
template_filter() decorator.

	Parameters:	name – the optional name of the filter, otherwise the
function name will be used.

	
add_template_global(f, name=None)

	Register a custom template global function. Works exactly like the
template_global() decorator.

New in version 0.10.

	Parameters:	name – the optional name of the global function, otherwise the
function name will be used.

	
add_template_test(f, name=None)

	Register a custom template test. Works exactly like the
template_test() decorator.

New in version 0.10.

	Parameters:	name – the optional name of the test, otherwise the
function name will be used.

	
add_url_rule(rule, endpoint=None, view_func=None, **options)

	Connects a URL rule. Works exactly like the route()
decorator. If a view_func is provided it will be registered with the
endpoint.

Basically this example:

@app.route('/')
def index():
 pass

Is equivalent to the following:

def index():
 pass
app.add_url_rule('/', 'index', index)

If the view_func is not provided you will need to connect the endpoint
to a view function like so:

app.view_functions['index'] = index

Internally route() invokes add_url_rule() so if you want
to customize the behavior via subclassing you only need to change
this method.

For more information refer to URL Route Registrations.

Changed in version 0.2: view_func parameter added.

Changed in version 0.6: OPTIONS is added automatically as method.

	Parameters:	
	rule – the URL rule as string

	endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as
endpoint

	view_func – the function to call when serving a request to the
provided endpoint

	options – the options to be forwarded to the underlying
Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule] object. A change
to Werkzeug is handling of method options. methods
is a list of methods this rule should be limited
to (GET, POST etc.). By default a rule
just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

	
after_request(f)

	Register a function to be run after each request.

Your function must take one parameter, an instance of
response_class and return a new response object or the
same (see process_response()).

As of Flask 0.7 this function might not be executed at the end of the
request in case an unhandled exception occurred.

	
after_request_funcs = None

	A dictionary with lists of functions that should be called after
each request. The key of the dictionary is the name of the blueprint
this function is active for, None for all requests. This can for
example be used to close database connections. To register a function
here, use the after_request() decorator.

	
app_context()

	Binds the application only. For as long as the application is bound
to the current context the flask.current_app points to that
application. An application context is automatically created when a
request context is pushed if necessary.

Example usage:

with app.app_context():
 ...

New in version 0.9.

	
app_ctx_globals_class

	The class that is used for the g instance.

Example use cases for a custom class:

	Store arbitrary attributes on flask.g.

	Add a property for lazy per-request database connectors.

	Return None instead of AttributeError on unexpected attributes.

	Raise exception if an unexpected attr is set, a “controlled” flask.g.

In Flask 0.9 this property was called request_globals_class but it
was changed in 0.10 to app_ctx_globals_class because the
flask.g object is now application context scoped.

New in version 0.10.

alias of _AppCtxGlobals

	
auto_find_instance_path()

	Tries to locate the instance path if it was not provided to the
constructor of the application class. It will basically calculate
the path to a folder named instance next to your main file or
the package.

New in version 0.8.

	
before_first_request(f)

	Registers a function to be run before the first request to this
instance of the application.

The function will be called without any arguments and its return
value is ignored.

New in version 0.8.

	
before_first_request_funcs = None

	A lists of functions that should be called at the beginning of the
first request to this instance. To register a function here, use
the before_first_request() decorator.

New in version 0.8.

	
before_request(f)

	Registers a function to run before each request.

The function will be called without any arguments.
If the function returns a non-None value, it’s handled as
if it was the return value from the view and further
request handling is stopped.

	
before_request_funcs = None

	A dictionary with lists of functions that should be called at the
beginning of the request. The key of the dictionary is the name of
the blueprint this function is active for, None for all requests.
This can for example be used to open database connections or
getting hold of the currently logged in user. To register a
function here, use the before_request() decorator.

	
blueprints = None

	all the attached blueprints in a dictionary by name. Blueprints
can be attached multiple times so this dictionary does not tell
you how often they got attached.

New in version 0.7.

	
cli = None

	The click command line context for this application. Commands
registered here show up in the flask command once the
application has been discovered. The default commands are
provided by Flask itself and can be overridden.

This is an instance of a click.Group [http://click.pocoo.org/api/#click.Group] object.

	
config = None

	The configuration dictionary as Config. This behaves
exactly like a regular dictionary but supports additional methods
to load a config from files.

	
config_class

	The class that is used for the config attribute of this app.
Defaults to Config.

Example use cases for a custom class:

	Default values for certain config options.

	Access to config values through attributes in addition to keys.

New in version 0.11.

alias of Config

	
context_processor(f)

	Registers a template context processor function.

	
create_global_jinja_loader()

	Creates the loader for the Jinja2 environment. Can be used to
override just the loader and keeping the rest unchanged. It’s
discouraged to override this function. Instead one should override
the jinja_loader() function instead.

The global loader dispatches between the loaders of the application
and the individual blueprints.

New in version 0.7.

	
create_jinja_environment()

	Creates the Jinja2 environment based on jinja_options
and select_jinja_autoescape(). Since 0.7 this also adds
the Jinja2 globals and filters after initialization. Override
this function to customize the behavior.

New in version 0.5.

Changed in version 0.11: Environment.auto_reload set in accordance with
TEMPLATES_AUTO_RELOAD configuration option.

	
create_url_adapter(request)

	Creates a URL adapter for the given request. The URL adapter
is created at a point where the request context is not yet set up
so the request is passed explicitly.

New in version 0.6.

Changed in version 0.9: This can now also be called without a request object when the
URL adapter is created for the application context.

	
debug

	The debug flag. Set this to True to enable debugging of the
application. In debug mode the debugger will kick in when an unhandled
exception occurs and the integrated server will automatically reload
the application if changes in the code are detected.

This attribute can also be configured from the config with the DEBUG
configuration key. Defaults to False.

	
default_config = ImmutableDict({'JSON_AS_ASCII': True, 'USE_X_SENDFILE': False, 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_DOMAIN': None, 'SESSION_COOKIE_NAME': 'session', 'DEBUG': False, 'LOGGER_HANDLER_POLICY': 'always', 'LOGGER_NAME': None, 'SESSION_COOKIE_SECURE': False, 'SECRET_KEY': None, 'EXPLAIN_TEMPLATE_LOADING': False, 'MAX_CONTENT_LENGTH': None, 'PROPAGATE_EXCEPTIONS': None, 'APPLICATION_ROOT': None, 'SERVER_NAME': None, 'PREFERRED_URL_SCHEME': 'http', 'JSONIFY_PRETTYPRINT_REGULAR': True, 'TESTING': False, 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(31), 'TEMPLATES_AUTO_RELOAD': None, 'TRAP_BAD_REQUEST_ERRORS': False, 'JSON_SORT_KEYS': True, 'JSONIFY_MIMETYPE': 'application/json', 'SESSION_COOKIE_HTTPONLY': True, 'SEND_FILE_MAX_AGE_DEFAULT': datetime.timedelta(0, 43200), 'PRESERVE_CONTEXT_ON_EXCEPTION': None, 'SESSION_REFRESH_EACH_REQUEST': True, 'TRAP_HTTP_EXCEPTIONS': False})

	Default configuration parameters.

	
dispatch_request()

	Does the request dispatching. Matches the URL and returns the
return value of the view or error handler. This does not have to
be a response object. In order to convert the return value to a
proper response object, call make_response().

Changed in version 0.7: This no longer does the exception handling, this code was
moved to the new full_dispatch_request().

	
do_teardown_appcontext(exc=<object object>)

	Called when an application context is popped. This works pretty
much the same as do_teardown_request() but for the application
context.

New in version 0.9.

	
do_teardown_request(exc=<object object>)

	Called after the actual request dispatching and will
call every as teardown_request() decorated function. This is
not actually called by the Flask object itself but is always
triggered when the request context is popped. That way we have a
tighter control over certain resources under testing environments.

Changed in version 0.9: Added the exc argument. Previously this was always using the
current exception information.

	
endpoint(endpoint)

	A decorator to register a function as an endpoint.
Example:

@app.endpoint('example.endpoint')
def example():
 return "example"

	Parameters:	endpoint – the name of the endpoint

	
error_handler_spec = None

	A dictionary of all registered error handlers. The key is None
for error handlers active on the application, otherwise the key is
the name of the blueprint. Each key points to another dictionary
where the key is the status code of the http exception. The
special key None points to a list of tuples where the first item
is the class for the instance check and the second the error handler
function.

To register a error handler, use the errorhandler()
decorator.

	
errorhandler(code_or_exception)

	A decorator that is used to register a function given an
error code. Example:

@app.errorhandler(404)
def page_not_found(error):
 return 'This page does not exist', 404

You can also register handlers for arbitrary exceptions:

@app.errorhandler(DatabaseError)
def special_exception_handler(error):
 return 'Database connection failed', 500

You can also register a function as error handler without using
the errorhandler() decorator. The following example is
equivalent to the one above:

def page_not_found(error):
 return 'This page does not exist', 404
app.error_handler_spec[None][404] = page_not_found

Setting error handlers via assignments to error_handler_spec
however is discouraged as it requires fiddling with nested dictionaries
and the special case for arbitrary exception types.

The first None refers to the active blueprint. If the error
handler should be application wide None shall be used.

New in version 0.7: Use register_error_handler() instead of modifying
error_handler_spec directly, for application wide error
handlers.

New in version 0.7: One can now additionally also register custom exception types
that do not necessarily have to be a subclass of the
HTTPException [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException] class.

	Parameters:	code_or_exception – the code as integer for the handler, or
an arbitrary exception

	
extensions = None

	a place where extensions can store application specific state. For
example this is where an extension could store database engines and
similar things. For backwards compatibility extensions should register
themselves like this:

if not hasattr(app, 'extensions'):
 app.extensions = {}
app.extensions['extensionname'] = SomeObject()

The key must match the name of the extension module. For example in
case of a “Flask-Foo” extension in flask_foo, the key would be
'foo'.

New in version 0.7.

	
full_dispatch_request()

	Dispatches the request and on top of that performs request
pre and postprocessing as well as HTTP exception catching and
error handling.

New in version 0.7.

	
get_send_file_max_age(filename)

	Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from
the configuration of current_app.

Static file functions such as send_from_directory() use this
function, and send_file() calls this function on
current_app when the given cache_timeout is None. If a
cache_timeout is given in send_file(), that timeout is used;
otherwise, this method is called.

This allows subclasses to change the behavior when sending files based
on the filename. For example, to set the cache timeout for .js files
to 60 seconds:

class MyFlask(flask.Flask):
 def get_send_file_max_age(self, name):
 if name.lower().endswith('.js'):
 return 60
 return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

	
got_first_request

	This attribute is set to True if the application started
handling the first request.

New in version 0.8.

	
handle_exception(e)

	Default exception handling that kicks in when an exception
occurs that is not caught. In debug mode the exception will
be re-raised immediately, otherwise it is logged and the handler
for a 500 internal server error is used. If no such handler
exists, a default 500 internal server error message is displayed.

New in version 0.3.

	
handle_http_exception(e)

	Handles an HTTP exception. By default this will invoke the
registered error handlers and fall back to returning the
exception as response.

New in version 0.3.

	
handle_url_build_error(error, endpoint, values)

	Handle BuildError on url_for().

	
handle_user_exception(e)

	This method is called whenever an exception occurs that should be
handled. A special case are
HTTPExceptions which are forwarded by
this function to the handle_http_exception() method. This
function will either return a response value or reraise the
exception with the same traceback.

New in version 0.7.

	
has_static_folder

	This is True if the package bound object’s container has a
folder for static files.

New in version 0.5.

	
init_jinja_globals()

	Deprecated. Used to initialize the Jinja2 globals.

New in version 0.5.

Changed in version 0.7: This method is deprecated with 0.7. Override
create_jinja_environment() instead.

	
inject_url_defaults(endpoint, values)

	Injects the URL defaults for the given endpoint directly into
the values dictionary passed. This is used internally and
automatically called on URL building.

New in version 0.7.

	
instance_path = None

	Holds the path to the instance folder.

New in version 0.8.

	
iter_blueprints()

	Iterates over all blueprints by the order they were registered.

New in version 0.11.

	
jinja_env

	The Jinja2 environment used to load templates.

	
jinja_environment

	The class that is used for the Jinja environment.

New in version 0.11.

alias of Environment

	
jinja_loader

	The Jinja loader for this package bound object.

New in version 0.5.

	
jinja_options = ImmutableDict({'extensions': ['jinja2.ext.autoescape', 'jinja2.ext.with_']})

	Options that are passed directly to the Jinja2 environment.

	
json_decoder

	The JSON decoder class to use. Defaults to JSONDecoder.

New in version 0.10.

alias of JSONDecoder

	
json_encoder

	The JSON encoder class to use. Defaults to JSONEncoder.

New in version 0.10.

alias of JSONEncoder

	
log_exception(exc_info)

	Logs an exception. This is called by handle_exception()
if debugging is disabled and right before the handler is called.
The default implementation logs the exception as error on the
logger.

New in version 0.8.

	
logger

	A logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] object for this application. The
default configuration is to log to stderr if the application is
in debug mode. This logger can be used to (surprise) log messages.
Here some examples:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

New in version 0.3.

	
logger_name

	The name of the logger to use. By default the logger name is the
package name passed to the constructor.

New in version 0.4.

	
make_config(instance_relative=False)

	Used to create the config attribute by the Flask constructor.
The instance_relative parameter is passed in from the constructor
of Flask (there named instance_relative_config) and indicates if
the config should be relative to the instance path or the root path
of the application.

New in version 0.8.

	
make_default_options_response()

	This method is called to create the default OPTIONS response.
This can be changed through subclassing to change the default
behavior of OPTIONS responses.

New in version 0.7.

	
make_null_session()

	Creates a new instance of a missing session. Instead of overriding
this method we recommend replacing the session_interface.

New in version 0.7.

	
make_response(rv)

	Converts the return value from a view function to a real
response object that is an instance of response_class.

The following types are allowed for rv:

	response_class
	the object is returned unchanged

	str [https://docs.python.org/3/library/stdtypes.html#str]
	a response object is created with the
string as body

	unicode
	a response object is created with the
string encoded to utf-8 as body

	a WSGI function
	the function is called as WSGI application
and buffered as response object

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]
	A tuple in the form (response, status,
headers) or (response, headers)
where response is any of the
types defined here, status is a string
or an integer and headers is a list or
a dictionary with header values.

	Parameters:	rv – the return value from the view function

Changed in version 0.9: Previously a tuple was interpreted as the arguments for the
response object.

	
make_shell_context()

	Returns the shell context for an interactive shell for this
application. This runs all the registered shell context
processors.

New in version 0.11.

	
name

	The name of the application. This is usually the import name
with the difference that it’s guessed from the run file if the
import name is main. This name is used as a display name when
Flask needs the name of the application. It can be set and overridden
to change the value.

New in version 0.8.

	
open_instance_resource(resource, mode='rb')

	Opens a resource from the application’s instance folder
(instance_path). Otherwise works like
open_resource(). Instance resources can also be opened for
writing.

	Parameters:	
	resource – the name of the resource. To access resources within
subfolders use forward slashes as separator.

	mode – resource file opening mode, default is ‘rb’.

	
open_resource(resource, mode='rb')

	Opens a resource from the application’s resource folder. To see
how this works, consider the following folder structure:

/myapplication.py
/schema.sql
/static
 /style.css
/templates
 /layout.html
 /index.html

If you want to open the schema.sql file you would do the
following:

with app.open_resource('schema.sql') as f:
 contents = f.read()
 do_something_with(contents)

	Parameters:	
	resource – the name of the resource. To access resources within
subfolders use forward slashes as separator.

	mode – resource file opening mode, default is ‘rb’.

	
open_session(request)

	Creates or opens a new session. Default implementation stores all
session data in a signed cookie. This requires that the
secret_key is set. Instead of overriding this method
we recommend replacing the session_interface.

	Parameters:	request – an instance of request_class.

	
permanent_session_lifetime

	A timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] which is used to set the expiration
date of a permanent session. The default is 31 days which makes a
permanent session survive for roughly one month.

This attribute can also be configured from the config with the
PERMANENT_SESSION_LIFETIME configuration key. Defaults to
timedelta(days=31)

	
preprocess_request()

	Called before the actual request dispatching and will
call each before_request() decorated function, passing no
arguments.
If any of these functions returns a value, it’s handled as
if it was the return value from the view and further
request handling is stopped.

This also triggers the url_value_preprocessor() functions before
the actual before_request() functions are called.

	
preserve_context_on_exception

	Returns the value of the PRESERVE_CONTEXT_ON_EXCEPTION
configuration value in case it’s set, otherwise a sensible default
is returned.

New in version 0.7.

	
process_response(response)

	Can be overridden in order to modify the response object
before it’s sent to the WSGI server. By default this will
call all the after_request() decorated functions.

Changed in version 0.5: As of Flask 0.5 the functions registered for after request
execution are called in reverse order of registration.

	Parameters:	response – a response_class object.

	Returns:	a new response object or the same, has to be an
instance of response_class.

	
propagate_exceptions

	Returns the value of the PROPAGATE_EXCEPTIONS configuration
value in case it’s set, otherwise a sensible default is returned.

New in version 0.7.

	
register_blueprint(blueprint, **options)

	Registers a blueprint on the application.

New in version 0.7.

	
register_error_handler(code_or_exception, f)

	Alternative error attach function to the errorhandler()
decorator that is more straightforward to use for non decorator
usage.

New in version 0.7.

	
request_class

	The class that is used for request objects. See Request
for more information.

alias of Request

	
request_context(environ)

	Creates a RequestContext from the given
environment and binds it to the current context. This must be used in
combination with the with statement because the request is only bound
to the current context for the duration of the with block.

Example usage:

with app.request_context(environ):
 do_something_with(request)

The object returned can also be used without the with statement
which is useful for working in the shell. The example above is
doing exactly the same as this code:

ctx = app.request_context(environ)
ctx.push()
try:
 do_something_with(request)
finally:
 ctx.pop()

Changed in version 0.3: Added support for non-with statement usage and with statement
is now passed the ctx object.

	Parameters:	environ – a WSGI environment

	
response_class

	The class that is used for response objects. See
Response for more information.

alias of Response

	
route(rule, **options)

	A decorator that is used to register a view function for a
given URL rule. This does the same thing as add_url_rule()
but is intended for decorator usage:

@app.route('/')
def index():
 return 'Hello World'

For more information refer to URL Route Registrations.

	Parameters:	
	rule – the URL rule as string

	endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as
endpoint

	options – the options to be forwarded to the underlying
Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule] object. A change
to Werkzeug is handling of method options. methods
is a list of methods this rule should be limited
to (GET, POST etc.). By default a rule
just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

	
run(host=None, port=None, debug=None, **options)

	Runs the application on a local development server.

Do not use run() in a production setting. It is not intended to
meet security and performance requirements for a production server.
Instead, see Deployment Options for WSGI server recommendations.

If the debug flag is set the server will automatically reload
for code changes and show a debugger in case an exception happened.

If you want to run the application in debug mode, but disable the
code execution on the interactive debugger, you can pass
use_evalex=False as parameter. This will keep the debugger’s
traceback screen active, but disable code execution.

It is not recommended to use this function for development with
automatic reloading as this is badly supported. Instead you should
be using the flask command line script’s run support.

Keep in Mind

Flask will suppress any server error with a generic error page
unless it is in debug mode. As such to enable just the
interactive debugger without the code reloading, you have to
invoke run() with debug=True and use_reloader=False.
Setting use_debugger to True without being in debug mode
won’t catch any exceptions because there won’t be any to
catch.

Changed in version 0.10: The default port is now picked from the SERVER_NAME variable.

	Parameters:	
	host – the hostname to listen on. Set this to '0.0.0.0' to
have the server available externally as well. Defaults to
'127.0.0.1'.

	port – the port of the webserver. Defaults to 5000 or the
port defined in the SERVER_NAME config variable if
present.

	debug – if given, enable or disable debug mode.
See debug.

	options – the options to be forwarded to the underlying
Werkzeug server. See
werkzeug.serving.run_simple() [http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple] for more
information.

	
save_session(session, response)

	Saves the session if it needs updates. For the default
implementation, check open_session(). Instead of overriding this
method we recommend replacing the session_interface.

	Parameters:	
	session – the session to be saved (a
SecureCookie [http://werkzeug.pocoo.org/docs/contrib/securecookie/#werkzeug.contrib.securecookie.SecureCookie]
object)

	response – an instance of response_class

	
secret_key

	If a secret key is set, cryptographic components can use this to
sign cookies and other things. Set this to a complex random value
when you want to use the secure cookie for instance.

This attribute can also be configured from the config with the
SECRET_KEY configuration key. Defaults to None.

	
select_jinja_autoescape(filename)

	Returns True if autoescaping should be active for the given
template name. If no template name is given, returns True.

New in version 0.5.

	
send_file_max_age_default

	A timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] which is used as default cache_timeout
for the send_file() functions. The default is 12 hours.

This attribute can also be configured from the config with the
SEND_FILE_MAX_AGE_DEFAULT configuration key. This configuration
variable can also be set with an integer value used as seconds.
Defaults to timedelta(hours=12)

	
send_static_file(filename)

	Function used internally to send static files from the static
folder to the browser.

New in version 0.5.

	
session_cookie_name

	The secure cookie uses this for the name of the session cookie.

This attribute can also be configured from the config with the
SESSION_COOKIE_NAME configuration key. Defaults to 'session'

	
session_interface = <flask.sessions.SecureCookieSessionInterface object>

	the session interface to use. By default an instance of
SecureCookieSessionInterface is used here.

New in version 0.8.

	
shell_context_processor(f)

	Registers a shell context processor function.

New in version 0.11.

	
shell_context_processors = None

	A list of shell context processor functions that should be run
when a shell context is created.

New in version 0.11.

	
should_ignore_error(error)

	This is called to figure out if an error should be ignored
or not as far as the teardown system is concerned. If this
function returns True then the teardown handlers will not be
passed the error.

New in version 0.10.

	
static_folder

	The absolute path to the configured static folder.

	
teardown_appcontext(f)

	Registers a function to be called when the application context
ends. These functions are typically also called when the request
context is popped.

Example:

ctx = app.app_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown
functions are called just before the app context moves from the
stack of active contexts. This becomes relevant if you are using
such constructs in tests.

Since a request context typically also manages an application
context it would also be called when you pop a request context.

When a teardown function was called because of an exception it will
be passed an error object.

The return values of teardown functions are ignored.

New in version 0.9.

	
teardown_appcontext_funcs = None

	A list of functions that are called when the application context
is destroyed. Since the application context is also torn down
if the request ends this is the place to store code that disconnects
from databases.

New in version 0.9.

	
teardown_request(f)

	Register a function to be run at the end of each request,
regardless of whether there was an exception or not. These functions
are executed when the request context is popped, even if not an
actual request was performed.

Example:

ctx = app.test_request_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown
functions are called just before the request context moves from the
stack of active contexts. This becomes relevant if you are using
such constructs in tests.

Generally teardown functions must take every necessary step to avoid
that they will fail. If they do execute code that might fail they
will have to surround the execution of these code by try/except
statements and log occurring errors.

When a teardown function was called because of a exception it will
be passed an error object.

The return values of teardown functions are ignored.

Debug Note

In debug mode Flask will not tear down a request on an exception
immediately. Instead it will keep it alive so that the interactive
debugger can still access it. This behavior can be controlled
by the PRESERVE_CONTEXT_ON_EXCEPTION configuration variable.

	
teardown_request_funcs = None

	A dictionary with lists of functions that are called after
each request, even if an exception has occurred. The key of the
dictionary is the name of the blueprint this function is active for,
None for all requests. These functions are not allowed to modify
the request, and their return values are ignored. If an exception
occurred while processing the request, it gets passed to each
teardown_request function. To register a function here, use the
teardown_request() decorator.

New in version 0.7.

	
template_context_processors = None

	A dictionary with list of functions that are called without argument
to populate the template context. The key of the dictionary is the
name of the blueprint this function is active for, None for all
requests. Each returns a dictionary that the template context is
updated with. To register a function here, use the
context_processor() decorator.

	
template_filter(name=None)

	A decorator that is used to register custom template filter.
You can specify a name for the filter, otherwise the function
name will be used. Example:

@app.template_filter()
def reverse(s):
 return s[::-1]

	Parameters:	name – the optional name of the filter, otherwise the
function name will be used.

	
template_global(name=None)

	A decorator that is used to register a custom template global function.
You can specify a name for the global function, otherwise the function
name will be used. Example:

@app.template_global()
def double(n):
 return 2 * n

New in version 0.10.

	Parameters:	name – the optional name of the global function, otherwise the
function name will be used.

	
template_test(name=None)

	A decorator that is used to register custom template test.
You can specify a name for the test, otherwise the function
name will be used. Example:

@app.template_test()
def is_prime(n):
 if n == 2:
 return True
 for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
 if n % i == 0:
 return False
 return True

New in version 0.10.

	Parameters:	name – the optional name of the test, otherwise the
function name will be used.

	
test_client(use_cookies=True, **kwargs)

	Creates a test client for this application. For information
about unit testing head over to Testing Flask Applications.

Note that if you are testing for assertions or exceptions in your
application code, you must set app.testing = True in order for the
exceptions to propagate to the test client. Otherwise, the exception
will be handled by the application (not visible to the test client) and
the only indication of an AssertionError or other exception will be a
500 status code response to the test client. See the testing
attribute. For example:

app.testing = True
client = app.test_client()

The test client can be used in a with block to defer the closing down
of the context until the end of the with block. This is useful if
you want to access the context locals for testing:

with app.test_client() as c:
 rv = c.get('/?vodka=42')
 assert request.args['vodka'] == '42'

Additionally, you may pass optional keyword arguments that will then
be passed to the application’s test_client_class constructor.
For example:

from flask.testing import FlaskClient

class CustomClient(FlaskClient):
 def __init__(self, *args, **kwargs):
 self._authentication = kwargs.pop("authentication")
 super(CustomClient,self).__init__(*args, **kwargs)

app.test_client_class = CustomClient
client = app.test_client(authentication='Basic')

See FlaskClient for more information.

Changed in version 0.4: added support for with block usage for the client.

New in version 0.7: The use_cookies parameter was added as well as the ability
to override the client to be used by setting the
test_client_class attribute.

Changed in version 0.11: Added **kwargs to support passing additional keyword arguments to
the constructor of test_client_class.

	
test_client_class = None

	the test client that is used with when test_client is used.

New in version 0.7.

	
test_request_context(*args, **kwargs)

	Creates a WSGI environment from the given values (see
werkzeug.test.EnvironBuilder [http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder] for more information, this
function accepts the same arguments).

	
testing

	The testing flag. Set this to True to enable the test mode of
Flask extensions (and in the future probably also Flask itself).
For example this might activate unittest helpers that have an
additional runtime cost which should not be enabled by default.

If this is enabled and PROPAGATE_EXCEPTIONS is not changed from the
default it’s implicitly enabled.

This attribute can also be configured from the config with the
TESTING configuration key. Defaults to False.

	
trap_http_exception(e)

	Checks if an HTTP exception should be trapped or not. By default
this will return False for all exceptions except for a bad request
key error if TRAP_BAD_REQUEST_ERRORS is set to True. It
also returns True if TRAP_HTTP_EXCEPTIONS is set to True.

This is called for all HTTP exceptions raised by a view function.
If it returns True for any exception the error handler for this
exception is not called and it shows up as regular exception in the
traceback. This is helpful for debugging implicitly raised HTTP
exceptions.

New in version 0.8.

	
update_template_context(context)

	Update the template context with some commonly used variables.
This injects request, session, config and g into the template
context as well as everything template context processors want
to inject. Note that the as of Flask 0.6, the original values
in the context will not be overridden if a context processor
decides to return a value with the same key.

	Parameters:	context – the context as a dictionary that is updated in place
to add extra variables.

	
url_build_error_handlers = None

	A list of functions that are called when url_for() raises a
BuildError. Each function registered here
is called with error, endpoint and values. If a function
returns None or raises a BuildError the next function is
tried.

New in version 0.9.

	
url_default_functions = None

	A dictionary with lists of functions that can be used as URL value
preprocessors. The key None here is used for application wide
callbacks, otherwise the key is the name of the blueprint.
Each of these functions has the chance to modify the dictionary
of URL values before they are used as the keyword arguments of the
view function. For each function registered this one should also
provide a url_defaults() function that adds the parameters
automatically again that were removed that way.

New in version 0.7.

	
url_defaults(f)

	Callback function for URL defaults for all view functions of the
application. It’s called with the endpoint and values and should
update the values passed in place.

	
url_map = None

	The Map [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Map] for this instance. You can use
this to change the routing converters after the class was created
but before any routes are connected. Example:

from werkzeug.routing import BaseConverter

class ListConverter(BaseConverter):
 def to_python(self, value):
 return value.split(',')
 def to_url(self, values):
 return ','.join(super(ListConverter, self).to_url(value)
 for value in values)

app = Flask(__name__)
app.url_map.converters['list'] = ListConverter

	
url_rule_class

	The rule object to use for URL rules created. This is used by
add_url_rule(). Defaults to werkzeug.routing.Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule].

New in version 0.7.

alias of Rule

	
url_value_preprocessor(f)

	Registers a function as URL value preprocessor for all view
functions of the application. It’s called before the view functions
are called and can modify the url values provided.

	
url_value_preprocessors = None

	A dictionary with lists of functions that can be used as URL
value processor functions. Whenever a URL is built these functions
are called to modify the dictionary of values in place. The key
None here is used for application wide
callbacks, otherwise the key is the name of the blueprint.
Each of these functions has the chance to modify the dictionary

New in version 0.7.

	
use_x_sendfile

	Enable this if you want to use the X-Sendfile feature. Keep in
mind that the server has to support this. This only affects files
sent with the send_file() method.

New in version 0.2.

This attribute can also be configured from the config with the
USE_X_SENDFILE configuration key. Defaults to False.

	
view_functions = None

	A dictionary of all view functions registered. The keys will
be function names which are also used to generate URLs and
the values are the function objects themselves.
To register a view function, use the route() decorator.

	
wsgi_app(environ, start_response)

	The actual WSGI application. This is not implemented in
__call__ so that middlewares can be applied without losing a
reference to the class. So instead of doing this:

app = MyMiddleware(app)

It’s a better idea to do this instead:

app.wsgi_app = MyMiddleware(app.wsgi_app)

Then you still have the original application object around and
can continue to call methods on it.

Changed in version 0.7: The behavior of the before and after request callbacks was changed
under error conditions and a new callback was added that will
always execute at the end of the request, independent on if an
error occurred or not. See Callbacks and Errors.

	Parameters:	
	environ – a WSGI environment

	start_response – a callable accepting a status code,
a list of headers and an optional
exception context to start the response

Blueprint Objects

	
class flask.Blueprint(name, import_name, static_folder=None, static_url_path=None, template_folder=None, url_prefix=None, subdomain=None, url_defaults=None, root_path=None)

	Represents a blueprint. A blueprint is an object that records
functions that will be called with the
BlueprintSetupState later to register functions
or other things on the main application. See Modular Applications with Blueprints for more
information.

New in version 0.7.

	
add_app_template_filter(f, name=None)

	Register a custom template filter, available application wide. Like
Flask.add_template_filter() but for a blueprint. Works exactly
like the app_template_filter() decorator.

	Parameters:	name – the optional name of the filter, otherwise the
function name will be used.

	
add_app_template_global(f, name=None)

	Register a custom template global, available application wide. Like
Flask.add_template_global() but for a blueprint. Works exactly
like the app_template_global() decorator.

New in version 0.10.

	Parameters:	name – the optional name of the global, otherwise the
function name will be used.

	
add_app_template_test(f, name=None)

	Register a custom template test, available application wide. Like
Flask.add_template_test() but for a blueprint. Works exactly
like the app_template_test() decorator.

New in version 0.10.

	Parameters:	name – the optional name of the test, otherwise the
function name will be used.

	
add_url_rule(rule, endpoint=None, view_func=None, **options)

	Like Flask.add_url_rule() but for a blueprint. The endpoint for
the url_for() function is prefixed with the name of the blueprint.

	
after_app_request(f)

	Like Flask.after_request() but for a blueprint. Such a function
is executed after each request, even if outside of the blueprint.

	
after_request(f)

	Like Flask.after_request() but for a blueprint. This function
is only executed after each request that is handled by a function of
that blueprint.

	
app_context_processor(f)

	Like Flask.context_processor() but for a blueprint. Such a
function is executed each request, even if outside of the blueprint.

	
app_errorhandler(code)

	Like Flask.errorhandler() but for a blueprint. This
handler is used for all requests, even if outside of the blueprint.

	
app_template_filter(name=None)

	Register a custom template filter, available application wide. Like
Flask.template_filter() but for a blueprint.

	Parameters:	name – the optional name of the filter, otherwise the
function name will be used.

	
app_template_global(name=None)

	Register a custom template global, available application wide. Like
Flask.template_global() but for a blueprint.

New in version 0.10.

	Parameters:	name – the optional name of the global, otherwise the
function name will be used.

	
app_template_test(name=None)

	Register a custom template test, available application wide. Like
Flask.template_test() but for a blueprint.

New in version 0.10.

	Parameters:	name – the optional name of the test, otherwise the
function name will be used.

	
app_url_defaults(f)

	Same as url_defaults() but application wide.

	
app_url_value_preprocessor(f)

	Same as url_value_preprocessor() but application wide.

	
before_app_first_request(f)

	Like Flask.before_first_request(). Such a function is
executed before the first request to the application.

	
before_app_request(f)

	Like Flask.before_request(). Such a function is executed
before each request, even if outside of a blueprint.

	
before_request(f)

	Like Flask.before_request() but for a blueprint. This function
is only executed before each request that is handled by a function of
that blueprint.

	
context_processor(f)

	Like Flask.context_processor() but for a blueprint. This
function is only executed for requests handled by a blueprint.

	
endpoint(endpoint)

	Like Flask.endpoint() but for a blueprint. This does not
prefix the endpoint with the blueprint name, this has to be done
explicitly by the user of this method. If the endpoint is prefixed
with a . it will be registered to the current blueprint, otherwise
it’s an application independent endpoint.

	
errorhandler(code_or_exception)

	Registers an error handler that becomes active for this blueprint
only. Please be aware that routing does not happen local to a
blueprint so an error handler for 404 usually is not handled by
a blueprint unless it is caused inside a view function. Another
special case is the 500 internal server error which is always looked
up from the application.

Otherwise works as the errorhandler() decorator
of the Flask object.

	
get_send_file_max_age(filename)

	Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from
the configuration of current_app.

Static file functions such as send_from_directory() use this
function, and send_file() calls this function on
current_app when the given cache_timeout is None. If a
cache_timeout is given in send_file(), that timeout is used;
otherwise, this method is called.

This allows subclasses to change the behavior when sending files based
on the filename. For example, to set the cache timeout for .js files
to 60 seconds:

class MyFlask(flask.Flask):
 def get_send_file_max_age(self, name):
 if name.lower().endswith('.js'):
 return 60
 return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

	
has_static_folder

	This is True if the package bound object’s container has a
folder for static files.

New in version 0.5.

	
jinja_loader

	The Jinja loader for this package bound object.

New in version 0.5.

	
make_setup_state(app, options, first_registration=False)

	Creates an instance of BlueprintSetupState()
object that is later passed to the register callback functions.
Subclasses can override this to return a subclass of the setup state.

	
open_resource(resource, mode='rb')

	Opens a resource from the application’s resource folder. To see
how this works, consider the following folder structure:

/myapplication.py
/schema.sql
/static
 /style.css
/templates
 /layout.html
 /index.html

If you want to open the schema.sql file you would do the
following:

with app.open_resource('schema.sql') as f:
 contents = f.read()
 do_something_with(contents)

	Parameters:	
	resource – the name of the resource. To access resources within
subfolders use forward slashes as separator.

	mode – resource file opening mode, default is ‘rb’.

	
record(func)

	Registers a function that is called when the blueprint is
registered on the application. This function is called with the
state as argument as returned by the make_setup_state()
method.

	
record_once(func)

	Works like record() but wraps the function in another
function that will ensure the function is only called once. If the
blueprint is registered a second time on the application, the
function passed is not called.

	
register(app, options, first_registration=False)

	Called by Flask.register_blueprint() to register a blueprint
on the application. This can be overridden to customize the register
behavior. Keyword arguments from
register_blueprint() are directly forwarded to this
method in the options dictionary.

	
register_error_handler(code_or_exception, f)

	Non-decorator version of the errorhandler() error attach
function, akin to the register_error_handler()
application-wide function of the Flask object but
for error handlers limited to this blueprint.

New in version 0.11.

	
route(rule, **options)

	Like Flask.route() but for a blueprint. The endpoint for the
url_for() function is prefixed with the name of the blueprint.

	
send_static_file(filename)

	Function used internally to send static files from the static
folder to the browser.

New in version 0.5.

	
static_folder

	The absolute path to the configured static folder.

	
teardown_app_request(f)

	Like Flask.teardown_request() but for a blueprint. Such a
function is executed when tearing down each request, even if outside of
the blueprint.

	
teardown_request(f)

	Like Flask.teardown_request() but for a blueprint. This
function is only executed when tearing down requests handled by a
function of that blueprint. Teardown request functions are executed
when the request context is popped, even when no actual request was
performed.

	
url_defaults(f)

	Callback function for URL defaults for this blueprint. It’s called
with the endpoint and values and should update the values passed
in place.

	
url_value_preprocessor(f)

	Registers a function as URL value preprocessor for this
blueprint. It’s called before the view functions are called and
can modify the url values provided.

Incoming Request Data

	
class flask.Request(environ, populate_request=True, shallow=False)

	The request object used by default in Flask. Remembers the
matched endpoint and view arguments.

It is what ends up as request. If you want to replace
the request object used you can subclass this and set
request_class to your subclass.

The request object is a Request [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request] subclass and
provides all of the attributes Werkzeug defines plus a few Flask
specific ones.

	
form

	A MultiDict [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict] with the parsed form data from POST
or PUT requests. Please keep in mind that file uploads will not
end up here, but instead in the files attribute.

	
args

	A MultiDict [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict] with the parsed contents of the query
string. (The part in the URL after the question mark).

	
values

	A CombinedMultiDict [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.CombinedMultiDict] with the contents of both
form and args.

	
cookies

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] with the contents of all cookies transmitted with
the request.

	
stream

	If the incoming form data was not encoded with a known mimetype
the data is stored unmodified in this stream for consumption. Most
of the time it is a better idea to use data which will give
you that data as a string. The stream only returns the data once.

	
headers

	The incoming request headers as a dictionary like object.

	
data

	Contains the incoming request data as string in case it came with
a mimetype Flask does not handle.

	
files

	A MultiDict [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict] with files uploaded as part of a
POST or PUT request. Each file is stored as
FileStorage [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage] object. It basically behaves like a
standard file object you know from Python, with the difference that
it also has a save() [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.save] function that can
store the file on the filesystem.

	
environ

	The underlying WSGI environment.

	
method

	The current request method (POST, GET etc.)

	
path

	

	
full_path

	

	
script_root

	

	
url

	

	
base_url

	

	
url_root

	Provides different ways to look at the current IRI [http://tools.ietf.org/html/rfc3987]. Imagine your application is
listening on the following application root:

http://www.example.com/myapplication

And a user requests the following URI:

http://www.example.com/myapplication/%CF%80/page.html?x=y

In this case the values of the above mentioned attributes would be
the following:

	path
	u'/π/page.html'

	full_path
	u'/π/page.html?x=y'

	script_root
	u'/myapplication'

	base_url
	u'http://www.example.com/myapplication/π/page.html'

	url
	u'http://www.example.com/myapplication/π/page.html?x=y'

	url_root
	u'http://www.example.com/myapplication/'

	
is_xhr

	True if the request was triggered via a JavaScript
XMLHttpRequest. This only works with libraries that support the
X-Requested-With header and set it to XMLHttpRequest.
Libraries that do that are prototype, jQuery and Mochikit and
probably some more.

	
blueprint

	The name of the current blueprint

	
endpoint

	The endpoint that matched the request. This in combination with
view_args can be used to reconstruct the same or a
modified URL. If an exception happened when matching, this will
be None.

	
get_json(force=False, silent=False, cache=True)

	Parses the incoming JSON request data and returns it. By default
this function will return None if the mimetype is not
application/json but this can be overridden by the
force parameter. If parsing fails the
on_json_loading_failed() method on the request object will be
invoked.

	Parameters:	
	force – if set to True the mimetype is ignored.

	silent – if set to True this method will fail silently
and return None.

	cache – if set to True the parsed JSON data is remembered
on the request.

	
is_json

	Indicates if this request is JSON or not. By default a request
is considered to include JSON data if the mimetype is
application/json or application/*+json.

New in version 0.11.

	
json

	If the mimetype is application/json this will contain the
parsed JSON data. Otherwise this will be None.

The get_json() method should be used instead.

	
max_content_length

	Read-only view of the MAX_CONTENT_LENGTH config key.

	
module

	The name of the current module if the request was dispatched
to an actual module. This is deprecated functionality, use blueprints
instead.

	
on_json_loading_failed(e)

	Called if decoding of the JSON data failed. The return value of
this method is used by get_json() when an error occurred. The
default implementation just raises a BadRequest exception.

Changed in version 0.10: Removed buggy previous behavior of generating a random JSON
response. If you want that behavior back you can trivially
add it by subclassing.

New in version 0.8.

	
routing_exception = None

	If matching the URL failed, this is the exception that will be
raised / was raised as part of the request handling. This is
usually a NotFound [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound] exception or
something similar.

	
url_rule = None

	The internal URL rule that matched the request. This can be
useful to inspect which methods are allowed for the URL from
a before/after handler (request.url_rule.methods) etc.

New in version 0.6.

	
view_args = None

	A dict of view arguments that matched the request. If an exception
happened when matching, this will be None.

	
class flask.request

	To access incoming request data, you can use the global request
object. Flask parses incoming request data for you and gives you
access to it through that global object. Internally Flask makes
sure that you always get the correct data for the active thread if you
are in a multithreaded environment.

This is a proxy. See Notes On Proxies for more information.

The request object is an instance of a Request [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request]
subclass and provides all of the attributes Werkzeug defines. This
just shows a quick overview of the most important ones.

Response Objects

	
class flask.Response(response=None, status=None, headers=None, mimetype=None, content_type=None, direct_passthrough=False)

	The response object that is used by default in Flask. Works like the
response object from Werkzeug but is set to have an HTML mimetype by
default. Quite often you don’t have to create this object yourself because
make_response() will take care of that for you.

If you want to replace the response object used you can subclass this and
set response_class to your subclass.

	
headers

	A Headers [http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.Headers] object representing the response headers.

	
status

	A string with a response status.

	
status_code

	The response status as integer.

	
data

	A descriptor that calls get_data() and set_data(). This
should not be used and will eventually get deprecated.

	
mimetype

	The mimetype (content type without charset etc.)

	
set_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=False, httponly=False)

	Sets a cookie. The parameters are the same as in the cookie Morsel
object in the Python standard library but it accepts unicode data, too.

	Parameters:	
	key – the key (name) of the cookie to be set.

	value – the value of the cookie.

	max_age – should be a number of seconds, or None (default) if
the cookie should last only as long as the client’s
browser session.

	expires – should be a datetime object or UNIX timestamp.

	path – limits the cookie to a given path, per default it will
span the whole domain.

	domain – if you want to set a cross-domain cookie. For example,
domain=".example.com" will set a cookie that is
readable by the domain www.example.com,
foo.example.com etc. Otherwise, a cookie will only
be readable by the domain that set it.

	secure – If True, the cookie will only be available via HTTPS

	httponly – disallow JavaScript to access the cookie. This is an
extension to the cookie standard and probably not
supported by all browsers.

Sessions

If you have the Flask.secret_key set you can use sessions in Flask
applications. A session basically makes it possible to remember
information from one request to another. The way Flask does this is by
using a signed cookie. So the user can look at the session contents, but
not modify it unless they know the secret key, so make sure to set that
to something complex and unguessable.

To access the current session you can use the session object:

	
class flask.session

	The session object works pretty much like an ordinary dict, with the
difference that it keeps track on modifications.

This is a proxy. See Notes On Proxies for more information.

The following attributes are interesting:

	
new

	True if the session is new, False otherwise.

	
modified

	True if the session object detected a modification. Be advised
that modifications on mutable structures are not picked up
automatically, in that situation you have to explicitly set the
attribute to True yourself. Here an example:

this change is not picked up because a mutable object (here
a list) is changed.
session['objects'].append(42)
so mark it as modified yourself
session.modified = True

	
permanent

	If set to True the session lives for
permanent_session_lifetime seconds. The
default is 31 days. If set to False (which is the default) the
session will be deleted when the user closes the browser.

Session Interface

New in version 0.8.

The session interface provides a simple way to replace the session
implementation that Flask is using.

	
class flask.sessions.SessionInterface

	The basic interface you have to implement in order to replace the
default session interface which uses werkzeug’s securecookie
implementation. The only methods you have to implement are
open_session() and save_session(), the others have
useful defaults which you don’t need to change.

The session object returned by the open_session() method has to
provide a dictionary like interface plus the properties and methods
from the SessionMixin. We recommend just subclassing a dict
and adding that mixin:

class Session(dict, SessionMixin):
 pass

If open_session() returns None Flask will call into
make_null_session() to create a session that acts as replacement
if the session support cannot work because some requirement is not
fulfilled. The default NullSession class that is created
will complain that the secret key was not set.

To replace the session interface on an application all you have to do
is to assign flask.Flask.session_interface:

app = Flask(__name__)
app.session_interface = MySessionInterface()

New in version 0.8.

	
get_cookie_domain(app)

	Helpful helper method that returns the cookie domain that should
be used for the session cookie if session cookies are used.

	
get_cookie_httponly(app)

	Returns True if the session cookie should be httponly. This
currently just returns the value of the SESSION_COOKIE_HTTPONLY
config var.

	
get_cookie_path(app)

	Returns the path for which the cookie should be valid. The
default implementation uses the value from the SESSION_COOKIE_PATH
config var if it’s set, and falls back to APPLICATION_ROOT or
uses / if it’s None.

	
get_cookie_secure(app)

	Returns True if the cookie should be secure. This currently
just returns the value of the SESSION_COOKIE_SECURE setting.

	
get_expiration_time(app, session)

	A helper method that returns an expiration date for the session
or None if the session is linked to the browser session. The
default implementation returns now + the permanent session
lifetime configured on the application.

	
is_null_session(obj)

	Checks if a given object is a null session. Null sessions are
not asked to be saved.

This checks if the object is an instance of null_session_class
by default.

	
make_null_session(app)

	Creates a null session which acts as a replacement object if the
real session support could not be loaded due to a configuration
error. This mainly aids the user experience because the job of the
null session is to still support lookup without complaining but
modifications are answered with a helpful error message of what
failed.

This creates an instance of null_session_class by default.

	
null_session_class

	make_null_session() will look here for the class that should
be created when a null session is requested. Likewise the
is_null_session() method will perform a typecheck against
this type.

alias of NullSession

	
open_session(app, request)

	This method has to be implemented and must either return None
in case the loading failed because of a configuration error or an
instance of a session object which implements a dictionary like
interface + the methods and attributes on SessionMixin.

	
pickle_based = False

	A flag that indicates if the session interface is pickle based.
This can be used by Flask extensions to make a decision in regards
to how to deal with the session object.

New in version 0.10.

	
save_session(app, session, response)

	This is called for actual sessions returned by open_session()
at the end of the request. This is still called during a request
context so if you absolutely need access to the request you can do
that.

	
should_set_cookie(app, session)

	Indicates whether a cookie should be set now or not. This is
used by session backends to figure out if they should emit a
set-cookie header or not. The default behavior is controlled by
the SESSION_REFRESH_EACH_REQUEST config variable. If
it’s set to False then a cookie is only set if the session is
modified, if set to True it’s always set if the session is
permanent.

This check is usually skipped if sessions get deleted.

New in version 0.11.

	
class flask.sessions.SecureCookieSessionInterface

	The default session interface that stores sessions in signed cookies
through the itsdangerous module.

	
static digest_method()

	the hash function to use for the signature. The default is sha1

	
key_derivation = 'hmac'

	the name of the itsdangerous supported key derivation. The default
is hmac.

	
salt = 'cookie-session'

	the salt that should be applied on top of the secret key for the
signing of cookie based sessions.

	
serializer = <flask.sessions.TaggedJSONSerializer object>

	A python serializer for the payload. The default is a compact
JSON derived serializer with support for some extra Python types
such as datetime objects or tuples.

	
session_class

	alias of SecureCookieSession

	
class flask.sessions.SecureCookieSession(initial=None)

	Base class for sessions based on signed cookies.

	
class flask.sessions.NullSession(initial=None)

	Class used to generate nicer error messages if sessions are not
available. Will still allow read-only access to the empty session
but fail on setting.

	
class flask.sessions.SessionMixin

	Expands a basic dictionary with an accessors that are expected
by Flask extensions and users for the session.

	
modified = True

	for some backends this will always be True, but some backends will
default this to false and detect changes in the dictionary for as
long as changes do not happen on mutable structures in the session.
The default mixin implementation just hardcodes True in.

	
new = False

	some session backends can tell you if a session is new, but that is
not necessarily guaranteed. Use with caution. The default mixin
implementation just hardcodes False in.

	
permanent

	this reflects the '_permanent' key in the dict.

	
flask.sessions.session_json_serializer = <flask.sessions.TaggedJSONSerializer object>

	A customized JSON serializer that supports a few extra types that
we take for granted when serializing (tuples, markup objects, datetime).

This object provides dumping and loading methods similar to simplejson
but it also tags certain builtin Python objects that commonly appear in
sessions. Currently the following extended values are supported in
the JSON it dumps:

	Markup objects

	UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] objects

	datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]s

Notice

The PERMANENT_SESSION_LIFETIME config key can also be an integer
starting with Flask 0.8. Either catch this down yourself or use
the permanent_session_lifetime attribute on the
app which converts the result to an integer automatically.

Test Client

	
class flask.testing.FlaskClient(*args, **kwargs)

	Works like a regular Werkzeug test client but has some knowledge about
how Flask works to defer the cleanup of the request context stack to the
end of a with body when used in a with statement. For general
information about how to use this class refer to
werkzeug.test.Client [http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client].

Changed in version 0.12: app.test_client() includes preset default environment, which can be
set after instantiation of the app.test_client() object in
client.environ_base.

Basic usage is outlined in the Testing Flask Applications chapter.

	
session_transaction(*args, **kwargs)

	When used in combination with a with statement this opens a
session transaction. This can be used to modify the session that
the test client uses. Once the with block is left the session is
stored back.

with client.session_transaction() as session:
 session['value'] = 42

Internally this is implemented by going through a temporary test
request context and since session handling could depend on
request variables this function accepts the same arguments as
test_request_context() which are directly
passed through.

Application Globals

To share data that is valid for one request only from one function to
another, a global variable is not good enough because it would break in
threaded environments. Flask provides you with a special object that
ensures it is only valid for the active request and that will return
different values for each request. In a nutshell: it does the right
thing, like it does for request and session.

	
flask.g

	Just store on this whatever you want. For example a database
connection or the user that is currently logged in.

Starting with Flask 0.10 this is stored on the application context and
no longer on the request context which means it becomes available if
only the application context is bound and not yet a request. This
is especially useful when combined with the Faking Resources and Context
pattern for testing.

Additionally as of 0.10 you can use the get() method to
get an attribute or None (or the second argument) if it’s not set.
These two usages are now equivalent:

user = getattr(flask.g, 'user', None)
user = flask.g.get('user', None)

It’s now also possible to use the in operator on it to see if an
attribute is defined and it yields all keys on iteration.

As of 0.11 you can use pop() and setdefault() in the same
way you would use them on a dictionary.

This is a proxy. See Notes On Proxies for more information.

Useful Functions and Classes

	
flask.current_app

	Points to the application handling the request. This is useful for
extensions that want to support multiple applications running side
by side. This is powered by the application context and not by the
request context, so you can change the value of this proxy by
using the app_context() method.

This is a proxy. See Notes On Proxies for more information.

	
flask.has_request_context()

	If you have code that wants to test if a request context is there or
not this function can be used. For instance, you may want to take advantage
of request information if the request object is available, but fail
silently if it is unavailable.

class User(db.Model):

 def __init__(self, username, remote_addr=None):
 self.username = username
 if remote_addr is None and has_request_context():
 remote_addr = request.remote_addr
 self.remote_addr = remote_addr

Alternatively you can also just test any of the context bound objects
(such as request or g for truthness):

class User(db.Model):

 def __init__(self, username, remote_addr=None):
 self.username = username
 if remote_addr is None and request:
 remote_addr = request.remote_addr
 self.remote_addr = remote_addr

New in version 0.7.

	
flask.copy_current_request_context(f)

	A helper function that decorates a function to retain the current
request context. This is useful when working with greenlets. The moment
the function is decorated a copy of the request context is created and
then pushed when the function is called.

Example:

import gevent
from flask import copy_current_request_context

@app.route('/')
def index():
 @copy_current_request_context
 def do_some_work():
 # do some work here, it can access flask.request like you
 # would otherwise in the view function.
 ...
 gevent.spawn(do_some_work)
 return 'Regular response'

New in version 0.10.

	
flask.has_app_context()

	Works like has_request_context() but for the application
context. You can also just do a boolean check on the
current_app object instead.

New in version 0.9.

	
flask.url_for(endpoint, **values)

	Generates a URL to the given endpoint with the method provided.

Variable arguments that are unknown to the target endpoint are appended
to the generated URL as query arguments. If the value of a query argument
is None, the whole pair is skipped. In case blueprints are active
you can shortcut references to the same blueprint by prefixing the
local endpoint with a dot (.).

This will reference the index function local to the current blueprint:

url_for('.index')

For more information, head over to the Quickstart.

To integrate applications, Flask has a hook to intercept URL build
errors through Flask.url_build_error_handlers. The url_for
function results in a BuildError when the current
app does not have a URL for the given endpoint and values. When it does, the
current_app calls its url_build_error_handlers if
it is not None, which can return a string to use as the result of
url_for (instead of url_for‘s default to raise the
BuildError exception) or re-raise the exception.
An example:

def external_url_handler(error, endpoint, values):
 "Looks up an external URL when `url_for` cannot build a URL."
 # This is an example of hooking the build_error_handler.
 # Here, lookup_url is some utility function you've built
 # which looks up the endpoint in some external URL registry.
 url = lookup_url(endpoint, **values)
 if url is None:
 # External lookup did not have a URL.
 # Re-raise the BuildError, in context of original traceback.
 exc_type, exc_value, tb = sys.exc_info()
 if exc_value is error:
 raise exc_type, exc_value, tb
 else:
 raise error
 # url_for will use this result, instead of raising BuildError.
 return url

app.url_build_error_handlers.append(external_url_handler)

Here, error is the instance of BuildError, and
endpoint and values are the arguments passed into url_for. Note
that this is for building URLs outside the current application, and not for
handling 404 NotFound errors.

New in version 0.10: The _scheme parameter was added.

New in version 0.9: The _anchor and _method parameters were added.

New in version 0.9: Calls Flask.handle_build_error() on
BuildError.

	Parameters:	
	endpoint – the endpoint of the URL (name of the function)

	values – the variable arguments of the URL rule

	_external – if set to True, an absolute URL is generated. Server
address can be changed via SERVER_NAME configuration variable which
defaults to localhost.

	_scheme – a string specifying the desired URL scheme. The _external
parameter must be set to True or a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised. The default
behavior uses the same scheme as the current request, or
PREFERRED_URL_SCHEME from the app configuration if no
request context is available. As of Werkzeug 0.10, this also can be set
to an empty string to build protocol-relative URLs.

	_anchor – if provided this is added as anchor to the URL.

	_method – if provided this explicitly specifies an HTTP method.

	
flask.abort(status, *args, **kwargs)

	Raises an HTTPException for the given status code or WSGI
application:

abort(404) # 404 Not Found
abort(Response('Hello World'))

Can be passed a WSGI application or a status code. If a status code is
given it’s looked up in the list of exceptions and will raise that
exception, if passed a WSGI application it will wrap it in a proxy WSGI
exception and raise that:

abort(404)
abort(Response('Hello World'))

	
flask.redirect(location, code=302, Response=None)

	Returns a response object (a WSGI application) that, if called,
redirects the client to the target location. Supported codes are 301,
302, 303, 305, and 307. 300 is not supported because it’s not a real
redirect and 304 because it’s the answer for a request with a request
with defined If-Modified-Since headers.

New in version 0.6: The location can now be a unicode string that is encoded using
the iri_to_uri() function.

New in version 0.10: The class used for the Response object can now be passed in.

	Parameters:	
	location – the location the response should redirect to.

	code – the redirect status code. defaults to 302.

	Response (class) – a Response class to use when instantiating a
response. The default is werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Response] if
unspecified.

	
flask.make_response(*args)

	Sometimes it is necessary to set additional headers in a view. Because
views do not have to return response objects but can return a value that
is converted into a response object by Flask itself, it becomes tricky to
add headers to it. This function can be called instead of using a return
and you will get a response object which you can use to attach headers.

If view looked like this and you want to add a new header:

def index():
 return render_template('index.html', foo=42)

You can now do something like this:

def index():
 response = make_response(render_template('index.html', foo=42))
 response.headers['X-Parachutes'] = 'parachutes are cool'
 return response

This function accepts the very same arguments you can return from a
view function. This for example creates a response with a 404 error
code:

response = make_response(render_template('not_found.html'), 404)

The other use case of this function is to force the return value of a
view function into a response which is helpful with view
decorators:

response = make_response(view_function())
response.headers['X-Parachutes'] = 'parachutes are cool'

Internally this function does the following things:

	if no arguments are passed, it creates a new response argument

	if one argument is passed, flask.Flask.make_response()
is invoked with it.

	if more than one argument is passed, the arguments are passed
to the flask.Flask.make_response() function as tuple.

New in version 0.6.

	
flask.after_this_request(f)

	Executes a function after this request. This is useful to modify
response objects. The function is passed the response object and has
to return the same or a new one.

Example:

@app.route('/')
def index():
 @after_this_request
 def add_header(response):
 response.headers['X-Foo'] = 'Parachute'
 return response
 return 'Hello World!'

This is more useful if a function other than the view function wants to
modify a response. For instance think of a decorator that wants to add
some headers without converting the return value into a response object.

New in version 0.9.

	
flask.send_file(filename_or_fp, mimetype=None, as_attachment=False, attachment_filename=None, add_etags=True, cache_timeout=None, conditional=False, last_modified=None)

	Sends the contents of a file to the client. This will use the
most efficient method available and configured. By default it will
try to use the WSGI server’s file_wrapper support. Alternatively
you can set the application’s use_x_sendfile attribute
to True to directly emit an X-Sendfile header. This however
requires support of the underlying webserver for X-Sendfile.

By default it will try to guess the mimetype for you, but you can
also explicitly provide one. For extra security you probably want
to send certain files as attachment (HTML for instance). The mimetype
guessing requires a filename or an attachment_filename to be
provided.

ETags will also be attached automatically if a filename is provided. You
can turn this off by setting add_etags=False.

If conditional=True and filename is provided, this method will try to
upgrade the response stream to support range requests. This will allow
the request to be answered with partial content response.

Please never pass filenames to this function from user sources;
you should use send_from_directory() instead.

New in version 0.2.

New in version 0.5: The add_etags, cache_timeout and conditional parameters were
added. The default behavior is now to attach etags.

Changed in version 0.7: mimetype guessing and etag support for file objects was
deprecated because it was unreliable. Pass a filename if you are
able to, otherwise attach an etag yourself. This functionality
will be removed in Flask 1.0

Changed in version 0.9: cache_timeout pulls its default from application config, when None.

Changed in version 0.12: The filename is no longer automatically inferred from file objects. If
you want to use automatic mimetype and etag support, pass a filepath via
filename_or_fp or attachment_filename.

Changed in version 0.12: The attachment_filename is preferred over filename for MIME-type
detection.

	Parameters:	
	filename_or_fp – the filename of the file to send in latin-1.
This is relative to the root_path
if a relative path is specified.
Alternatively a file object might be provided in
which case X-Sendfile might not work and fall
back to the traditional method. Make sure that the
file pointer is positioned at the start of data to
send before calling send_file().

	mimetype – the mimetype of the file if provided. If a file path is
given, auto detection happens as fallback, otherwise an
error will be raised.

	as_attachment – set to True if you want to send this file with
a Content-Disposition: attachment header.

	attachment_filename – the filename for the attachment if it
differs from the file’s filename.

	add_etags – set to False to disable attaching of etags.

	conditional – set to True to enable conditional responses.

	cache_timeout – the timeout in seconds for the headers. When None
(default), this value is set by
get_send_file_max_age() of
current_app.

	last_modified – set the Last-Modified header to this value,
a datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or timestamp.
If a file was passed, this overrides its mtime.

	
flask.send_from_directory(directory, filename, **options)

	Send a file from a given directory with send_file(). This
is a secure way to quickly expose static files from an upload folder
or something similar.

Example usage:

@app.route('/uploads/<path:filename>')
def download_file(filename):
 return send_from_directory(app.config['UPLOAD_FOLDER'],
 filename, as_attachment=True)

Sending files and Performance

It is strongly recommended to activate either X-Sendfile support in
your webserver or (if no authentication happens) to tell the webserver
to serve files for the given path on its own without calling into the
web application for improved performance.

New in version 0.5.

	Parameters:	
	directory – the directory where all the files are stored.

	filename – the filename relative to that directory to
download.

	options – optional keyword arguments that are directly
forwarded to send_file().

	
flask.safe_join(directory, *pathnames)

	Safely join directory and zero or more untrusted pathnames
components.

Example usage:

@app.route('/wiki/<path:filename>')
def wiki_page(filename):
 filename = safe_join(app.config['WIKI_FOLDER'], filename)
 with open(filename, 'rb') as fd:
 content = fd.read() # Read and process the file content...

	Parameters:	
	directory – the trusted base directory.

	pathnames – the untrusted pathnames relative to that directory.

	Raises:	NotFound [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound] if one or more passed
paths fall out of its boundaries.

	
flask.escape(s) → markup

	Convert the characters &, <, >, ‘, and ” in string s to HTML-safe
sequences. Use this if you need to display text that might contain
such characters in HTML. Marks return value as markup string.

	
class flask.Markup

	Marks a string as being safe for inclusion in HTML/XML output without
needing to be escaped. This implements the __html__ interface a couple
of frameworks and web applications use. Markup is a direct
subclass of unicode and provides all the methods of unicode just that
it escapes arguments passed and always returns Markup.

The escape function returns markup objects so that double escaping can’t
happen.

The constructor of the Markup class can be used for three
different things: When passed an unicode object it’s assumed to be safe,
when passed an object with an HTML representation (has an __html__
method) that representation is used, otherwise the object passed is
converted into a unicode string and then assumed to be safe:

>>> Markup("Hello World!")
Markup(u'Hello World!')
>>> class Foo(object):
... def __html__(self):
... return 'foo'
...
>>> Markup(Foo())
Markup(u'foo')

If you want object passed being always treated as unsafe you can use the
escape() classmethod to create a Markup object:

>>> Markup.escape("Hello World!")
Markup(u'Hello World!')

Operations on a markup string are markup aware which means that all
arguments are passed through the escape() function:

>>> em = Markup("%s")
>>> em % "foo & bar"
Markup(u'foo & bar')
>>> strong = Markup("%(text)s")
>>> strong % {'text': '<blink>hacker here</blink>'}
Markup(u'<blink>hacker here</blink>')
>>> Markup("Hello ") + "<foo>"
Markup(u'Hello <foo>')

	
classmethod escape(s)

	Escape the string. Works like escape() with the difference
that for subclasses of Markup this function would return the
correct subclass.

	
striptags()

	Unescape markup into an text_type string and strip all tags. This
also resolves known HTML4 and XHTML entities. Whitespace is
normalized to one:

>>> Markup("Main » About").striptags()
u'Main \xbb About'

	
unescape()

	Unescape markup again into an text_type string. This also resolves
known HTML4 and XHTML entities:

>>> Markup("Main » About").unescape()
u'Main \xbb About'

Message Flashing

	
flask.flash(message, category='message')

	Flashes a message to the next request. In order to remove the
flashed message from the session and to display it to the user,
the template has to call get_flashed_messages().

Changed in version 0.3: category parameter added.

	Parameters:	
	message – the message to be flashed.

	category – the category for the message. The following values
are recommended: 'message' for any kind of message,
'error' for errors, 'info' for information
messages and 'warning' for warnings. However any
kind of string can be used as category.

	
flask.get_flashed_messages(with_categories=False, category_filter=[])

	Pulls all flashed messages from the session and returns them.
Further calls in the same request to the function will return
the same messages. By default just the messages are returned,
but when with_categories is set to True, the return value will
be a list of tuples in the form (category, message) instead.

Filter the flashed messages to one or more categories by providing those
categories in category_filter. This allows rendering categories in
separate html blocks. The with_categories and category_filter
arguments are distinct:

	with_categories controls whether categories are returned with message
text (True gives a tuple, where False gives just the message text).

	category_filter filters the messages down to only those matching the
provided categories.

See Message Flashing for examples.

Changed in version 0.3: with_categories parameter added.

Changed in version 0.9: category_filter parameter added.

	Parameters:	
	with_categories – set to True to also receive categories.

	category_filter – whitelist of categories to limit return values

JSON Support

Flask uses simplejson for the JSON implementation. Since simplejson
is provided by both the standard library as well as extension, Flask will
try simplejson first and then fall back to the stdlib json module. On top
of that it will delegate access to the current application’s JSON encoders
and decoders for easier customization.

So for starters instead of doing:

try:
 import simplejson as json
except ImportError:
 import json

You can instead just do this:

from flask import json

For usage examples, read the json [https://docs.python.org/3/library/json.html#module-json] documentation in the standard
library. The following extensions are by default applied to the stdlib’s
JSON module:

	datetime objects are serialized as RFC 822 [https://tools.ietf.org/html/rfc822.html] strings.

	Any object with an __html__ method (like Markup)
will have that method called and then the return value is serialized
as string.

The htmlsafe_dumps() function of this json module is also available
as filter called |tojson in Jinja2. Note that inside script
tags no escaping must take place, so make sure to disable escaping
with |safe if you intend to use it inside script tags unless
you are using Flask 0.10 which implies that:

<script type=text/javascript>
 doSomethingWith({{ user.username|tojson|safe }});
</script>

Auto-Sort JSON Keys

The configuration variable JSON_SORT_KEYS (Configuration Handling) can be
set to false to stop Flask from auto-sorting keys. By default sorting
is enabled and outside of the app context sorting is turned on.

Notice that disabling key sorting can cause issues when using content
based HTTP caches and Python’s hash randomization feature.

	
flask.json.jsonify(*args, **kwargs)

	This function wraps dumps() to add a few enhancements that make
life easier. It turns the JSON output into a Response
object with the application/json mimetype. For convenience, it
also converts multiple arguments into an array or multiple keyword arguments
into a dict. This means that both jsonify(1,2,3) and
jsonify([1,2,3]) serialize to [1,2,3].

For clarity, the JSON serialization behavior has the following differences
from dumps():

	Single argument: Passed straight through to dumps().

	Multiple arguments: Converted to an array before being passed to
dumps().

	Multiple keyword arguments: Converted to a dict before being passed to
dumps().

	Both args and kwargs: Behavior undefined and will throw an exception.

Example usage:

from flask import jsonify

@app.route('/_get_current_user')
def get_current_user():
 return jsonify(username=g.user.username,
 email=g.user.email,
 id=g.user.id)

This will send a JSON response like this to the browser:

{
 "username": "admin",
 "email": "admin@localhost",
 "id": 42
}

Changed in version 0.11: Added support for serializing top-level arrays. This introduces a
security risk in ancient browsers. See JSON Security for details.

This function’s response will be pretty printed if it was not requested
with X-Requested-With: XMLHttpRequest to simplify debugging unless
the JSONIFY_PRETTYPRINT_REGULAR config parameter is set to false.
Compressed (not pretty) formatting currently means no indents and no
spaces after separators.

New in version 0.2.

	
flask.json.dumps(obj, **kwargs)

	Serialize obj to a JSON formatted str by using the application’s
configured encoder (json_encoder) if there is an
application on the stack.

This function can return unicode strings or ascii-only bytestrings by
default which coerce into unicode strings automatically. That behavior by
default is controlled by the JSON_AS_ASCII configuration variable
and can be overridden by the simplejson ensure_ascii parameter.

	
flask.json.dump(obj, fp, **kwargs)

	Like dumps() but writes into a file object.

	
flask.json.loads(s, **kwargs)

	Unserialize a JSON object from a string s by using the application’s
configured decoder (json_decoder) if there is an
application on the stack.

	
flask.json.load(fp, **kwargs)

	Like loads() but reads from a file object.

	
class flask.json.JSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	The default Flask JSON encoder. This one extends the default simplejson
encoder by also supporting datetime objects, UUID as well as
Markup objects which are serialized as RFC 822 datetime strings (same
as the HTTP date format). In order to support more data types override the
default() method.

	
default(o)

	Implement this method in a subclass such that it returns a
serializable object for o, or calls the base implementation (to
raise a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]).

For example, to support arbitrary iterators, you could implement
default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 return JSONEncoder.default(self, o)

	
class flask.json.JSONDecoder(encoding=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, strict=True, object_pairs_hook=None)

	The default JSON decoder. This one does not change the behavior from
the default simplejson decoder. Consult the json [https://docs.python.org/3/library/json.html#module-json] documentation
for more information. This decoder is not only used for the load
functions of this module but also Request.

Template Rendering

	
flask.render_template(template_name_or_list, **context)

	Renders a template from the template folder with the given
context.

	Parameters:	
	template_name_or_list – the name of the template to be
rendered, or an iterable with template names
the first one existing will be rendered

	context – the variables that should be available in the
context of the template.

	
flask.render_template_string(source, **context)

	Renders a template from the given template source string
with the given context. Template variables will be autoescaped.

	Parameters:	
	source – the source code of the template to be
rendered

	context – the variables that should be available in the
context of the template.

	
flask.get_template_attribute(template_name, attribute)

	Loads a macro (or variable) a template exports. This can be used to
invoke a macro from within Python code. If you for example have a
template named _cider.html with the following contents:

{% macro hello(name) %}Hello {{ name }}!{% endmacro %}

You can access this from Python code like this:

hello = get_template_attribute('_cider.html', 'hello')
return hello('World')

New in version 0.2.

	Parameters:	
	template_name – the name of the template

	attribute – the name of the variable of macro to access

Configuration

	
class flask.Config(root_path, defaults=None)

	Works exactly like a dict but provides ways to fill it from files
or special dictionaries. There are two common patterns to populate the
config.

Either you can fill the config from a config file:

app.config.from_pyfile('yourconfig.cfg')

Or alternatively you can define the configuration options in the
module that calls from_object() or provide an import path to
a module that should be loaded. It is also possible to tell it to
use the same module and with that provide the configuration values
just before the call:

DEBUG = True
SECRET_KEY = 'development key'
app.config.from_object(__name__)

In both cases (loading from any Python file or loading from modules),
only uppercase keys are added to the config. This makes it possible to use
lowercase values in the config file for temporary values that are not added
to the config or to define the config keys in the same file that implements
the application.

Probably the most interesting way to load configurations is from an
environment variable pointing to a file:

app.config.from_envvar('YOURAPPLICATION_SETTINGS')

In this case before launching the application you have to set this
environment variable to the file you want to use. On Linux and OS X
use the export statement:

export YOURAPPLICATION_SETTINGS='/path/to/config/file'

On windows use set instead.

	Parameters:	
	root_path – path to which files are read relative from. When the
config object is created by the application, this is
the application’s root_path.

	defaults – an optional dictionary of default values

	
from_envvar(variable_name, silent=False)

	Loads a configuration from an environment variable pointing to
a configuration file. This is basically just a shortcut with nicer
error messages for this line of code:

app.config.from_pyfile(os.environ['YOURAPPLICATION_SETTINGS'])

	Parameters:	
	variable_name – name of the environment variable

	silent – set to True if you want silent failure for missing
files.

	Returns:	bool. True if able to load config, False otherwise.

	
from_json(filename, silent=False)

	Updates the values in the config from a JSON file. This function
behaves as if the JSON object was a dictionary and passed to the
from_mapping() function.

	Parameters:	
	filename – the filename of the JSON file. This can either be an
absolute filename or a filename relative to the
root path.

	silent – set to True if you want silent failure for missing
files.

New in version 0.11.

	
from_mapping(*mapping, **kwargs)

	Updates the config like update() ignoring items with non-upper
keys.

New in version 0.11.

	
from_object(obj)

	Updates the values from the given object. An object can be of one
of the following two types:

	a string: in this case the object with that name will be imported

	an actual object reference: that object is used directly

Objects are usually either modules or classes. from_object()
loads only the uppercase attributes of the module/class. A dict
object will not work with from_object() because the keys of a
dict are not attributes of the dict class.

Example of module-based configuration:

app.config.from_object('yourapplication.default_config')
from yourapplication import default_config
app.config.from_object(default_config)

You should not use this function to load the actual configuration but
rather configuration defaults. The actual config should be loaded
with from_pyfile() and ideally from a location not within the
package because the package might be installed system wide.

See Development / Production for an example of class-based configuration
using from_object().

	Parameters:	obj – an import name or object

	
from_pyfile(filename, silent=False)

	Updates the values in the config from a Python file. This function
behaves as if the file was imported as module with the
from_object() function.

	Parameters:	
	filename – the filename of the config. This can either be an
absolute filename or a filename relative to the
root path.

	silent – set to True if you want silent failure for missing
files.

New in version 0.7: silent parameter.

	
get_namespace(namespace, lowercase=True, trim_namespace=True)

	Returns a dictionary containing a subset of configuration options
that match the specified namespace/prefix. Example usage:

app.config['IMAGE_STORE_TYPE'] = 'fs'
app.config['IMAGE_STORE_PATH'] = '/var/app/images'
app.config['IMAGE_STORE_BASE_URL'] = 'http://img.website.com'
image_store_config = app.config.get_namespace('IMAGE_STORE_')

The resulting dictionary image_store_config would look like:

{
 'type': 'fs',
 'path': '/var/app/images',
 'base_url': 'http://img.website.com'
}

This is often useful when configuration options map directly to
keyword arguments in functions or class constructors.

	Parameters:	
	namespace – a configuration namespace

	lowercase – a flag indicating if the keys of the resulting
dictionary should be lowercase

	trim_namespace – a flag indicating if the keys of the resulting
dictionary should not include the namespace

New in version 0.11.

Extensions

	
flask.ext

	This module acts as redirect import module to Flask extensions. It was
added in 0.8 as the canonical way to import Flask extensions and makes
it possible for us to have more flexibility in how we distribute
extensions.

If you want to use an extension named “Flask-Foo” you would import it
from ext as follows:

from flask.ext import foo

New in version 0.8.

Stream Helpers

	
flask.stream_with_context(generator_or_function)

	Request contexts disappear when the response is started on the server.
This is done for efficiency reasons and to make it less likely to encounter
memory leaks with badly written WSGI middlewares. The downside is that if
you are using streamed responses, the generator cannot access request bound
information any more.

This function however can help you keep the context around for longer:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():
 @stream_with_context
 def generate():
 yield 'Hello '
 yield request.args['name']
 yield '!'
 return Response(generate())

Alternatively it can also be used around a specific generator:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():
 def generate():
 yield 'Hello '
 yield request.args['name']
 yield '!'
 return Response(stream_with_context(generate()))

New in version 0.9.

Useful Internals

	
class flask.ctx.RequestContext(app, environ, request=None)

	The request context contains all request relevant information. It is
created at the beginning of the request and pushed to the
_request_ctx_stack and removed at the end of it. It will create the
URL adapter and request object for the WSGI environment provided.

Do not attempt to use this class directly, instead use
test_request_context() and
request_context() to create this object.

When the request context is popped, it will evaluate all the
functions registered on the application for teardown execution
(teardown_request()).

The request context is automatically popped at the end of the request
for you. In debug mode the request context is kept around if
exceptions happen so that interactive debuggers have a chance to
introspect the data. With 0.4 this can also be forced for requests
that did not fail and outside of DEBUG mode. By setting
'flask._preserve_context' to True on the WSGI environment the
context will not pop itself at the end of the request. This is used by
the test_client() for example to implement the
deferred cleanup functionality.

You might find this helpful for unittests where you need the
information from the context local around for a little longer. Make
sure to properly pop() the stack yourself in
that situation, otherwise your unittests will leak memory.

	
copy()

	Creates a copy of this request context with the same request object.
This can be used to move a request context to a different greenlet.
Because the actual request object is the same this cannot be used to
move a request context to a different thread unless access to the
request object is locked.

New in version 0.10.

	
match_request()

	Can be overridden by a subclass to hook into the matching
of the request.

	
pop(exc=<object object>)

	Pops the request context and unbinds it by doing that. This will
also trigger the execution of functions registered by the
teardown_request() decorator.

Changed in version 0.9: Added the exc argument.

	
push()

	Binds the request context to the current context.

	
flask._request_ctx_stack

	The internal LocalStack [http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalStack] that is used to implement
all the context local objects used in Flask. This is a documented
instance and can be used by extensions and application code but the
use is discouraged in general.

The following attributes are always present on each layer of the
stack:

	app

	the active Flask application.

	url_adapter

	the URL adapter that was used to match the request.

	request

	the current request object.

	session

	the active session object.

	g

	an object with all the attributes of the flask.g object.

	flashes

	an internal cache for the flashed messages.

Example usage:

from flask import _request_ctx_stack

def get_session():
 ctx = _request_ctx_stack.top
 if ctx is not None:
 return ctx.session

	
class flask.ctx.AppContext(app)

	The application context binds an application object implicitly
to the current thread or greenlet, similar to how the
RequestContext binds request information. The application
context is also implicitly created if a request context is created
but the application is not on top of the individual application
context.

	
pop(exc=<object object>)

	Pops the app context.

	
push()

	Binds the app context to the current context.

	
flask._app_ctx_stack

	Works similar to the request context but only binds the application.
This is mainly there for extensions to store data.

New in version 0.9.

	
class flask.blueprints.BlueprintSetupState(blueprint, app, options, first_registration)

	Temporary holder object for registering a blueprint with the
application. An instance of this class is created by the
make_setup_state() method and later passed
to all register callback functions.

	
add_url_rule(rule, endpoint=None, view_func=None, **options)

	A helper method to register a rule (and optionally a view function)
to the application. The endpoint is automatically prefixed with the
blueprint’s name.

	
app = None

	a reference to the current application

	
blueprint = None

	a reference to the blueprint that created this setup state.

	
first_registration = None

	as blueprints can be registered multiple times with the
application and not everything wants to be registered
multiple times on it, this attribute can be used to figure
out if the blueprint was registered in the past already.

	
options = None

	a dictionary with all options that were passed to the
register_blueprint() method.

	
subdomain = None

	The subdomain that the blueprint should be active for, None
otherwise.

	
url_defaults = None

	A dictionary with URL defaults that is added to each and every
URL that was defined with the blueprint.

	
url_prefix = None

	The prefix that should be used for all URLs defined on the
blueprint.

Signals

New in version 0.6.

	
signals.signals_available

	True if the signaling system is available. This is the case
when blinker [https://pypi.python.org/pypi/blinker] is installed.

The following signals exist in Flask:

	
flask.template_rendered

	This signal is sent when a template was successfully rendered. The
signal is invoked with the instance of the template as template
and the context as dictionary (named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
 sender.logger.debug('Rendering template "%s" with context %s',
 template.name or 'string template',
 context)

from flask import template_rendered
template_rendered.connect(log_template_renders, app)

	
flask.before_render_template

	This signal is sent before template rendering process. The
signal is invoked with the instance of the template as template
and the context as dictionary (named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
 sender.logger.debug('Rendering template "%s" with context %s',
 template.name or 'string template',
 context)

from flask import before_render_template
before_render_template.connect(log_template_renders, app)

	
flask.request_started

	This signal is sent when the request context is set up, before
any request processing happens. Because the request context is already
bound, the subscriber can access the request with the standard global
proxies such as request.

Example subscriber:

def log_request(sender, **extra):
 sender.logger.debug('Request context is set up')

from flask import request_started
request_started.connect(log_request, app)

	
flask.request_finished

	This signal is sent right before the response is sent to the client.
It is passed the response to be sent named response.

Example subscriber:

def log_response(sender, response, **extra):
 sender.logger.debug('Request context is about to close down. '
 'Response: %s', response)

from flask import request_finished
request_finished.connect(log_response, app)

	
flask.got_request_exception

	This signal is sent when an exception happens during request processing.
It is sent before the standard exception handling kicks in and even
in debug mode, where no exception handling happens. The exception
itself is passed to the subscriber as exception.

Example subscriber:

def log_exception(sender, exception, **extra):
 sender.logger.debug('Got exception during processing: %s', exception)

from flask import got_request_exception
got_request_exception.connect(log_exception, app)

	
flask.request_tearing_down

	This signal is sent when the request is tearing down. This is always
called, even if an exception is caused. Currently functions listening
to this signal are called after the regular teardown handlers, but this
is not something you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
 session.close()

from flask import request_tearing_down
request_tearing_down.connect(close_db_connection, app)

As of Flask 0.9, this will also be passed an exc keyword argument
that has a reference to the exception that caused the teardown if
there was one.

	
flask.appcontext_tearing_down

	This signal is sent when the app context is tearing down. This is always
called, even if an exception is caused. Currently functions listening
to this signal are called after the regular teardown handlers, but this
is not something you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
 session.close()

from flask import appcontext_tearing_down
appcontext_tearing_down.connect(close_db_connection, app)

This will also be passed an exc keyword argument that has a reference
to the exception that caused the teardown if there was one.

	
flask.appcontext_pushed

	This signal is sent when an application context is pushed. The sender
is the application. This is usually useful for unittests in order to
temporarily hook in information. For instance it can be used to
set a resource early onto the g object.

Example usage:

from contextlib import contextmanager
from flask import appcontext_pushed

@contextmanager
def user_set(app, user):
 def handler(sender, **kwargs):
 g.user = user
 with appcontext_pushed.connected_to(handler, app):
 yield

And in the testcode:

def test_user_me(self):
 with user_set(app, 'john'):
 c = app.test_client()
 resp = c.get('/users/me')
 assert resp.data == 'username=john'

New in version 0.10.

	
flask.appcontext_popped

	This signal is sent when an application context is popped. The sender
is the application. This usually falls in line with the
appcontext_tearing_down signal.

New in version 0.10.

	
flask.message_flashed

	This signal is sent when the application is flashing a message. The
messages is sent as message keyword argument and the category as
category.

Example subscriber:

recorded = []
def record(sender, message, category, **extra):
 recorded.append((message, category))

from flask import message_flashed
message_flashed.connect(record, app)

New in version 0.10.

	
class signals.Namespace

	An alias for blinker.base.Namespace [https://pythonhosted.org/blinker/index.html#blinker.base.Namespace] if blinker is available,
otherwise a dummy class that creates fake signals. This class is
available for Flask extensions that want to provide the same fallback
system as Flask itself.

	
signal(name, doc=None)

	Creates a new signal for this namespace if blinker is available,
otherwise returns a fake signal that has a send method that will
do nothing but will fail with a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] for all other
operations, including connecting.

Class-Based Views

New in version 0.7.

	
class flask.views.View

	Alternative way to use view functions. A subclass has to implement
dispatch_request() which is called with the view arguments from
the URL routing system. If methods is provided the methods
do not have to be passed to the add_url_rule()
method explicitly:

class MyView(View):
 methods = ['GET']

 def dispatch_request(self, name):
 return 'Hello %s!' % name

app.add_url_rule('/hello/<name>', view_func=MyView.as_view('myview'))

When you want to decorate a pluggable view you will have to either do that
when the view function is created (by wrapping the return value of
as_view()) or you can use the decorators attribute:

class SecretView(View):
 methods = ['GET']
 decorators = [superuser_required]

 def dispatch_request(self):
 ...

The decorators stored in the decorators list are applied one after another
when the view function is created. Note that you can not use the class
based decorators since those would decorate the view class and not the
generated view function!

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	The canonical way to decorate class-based views is to decorate the
return value of as_view(). However since this moves parts of the
logic from the class declaration to the place where it’s hooked
into the routing system.

You can place one or more decorators in this list and whenever the
view function is created the result is automatically decorated.

New in version 0.8.

	
dispatch_request()

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
methods = None

	A list of methods this view can handle.

	
class flask.views.MethodView

	Like a regular class-based view but that dispatches requests to
particular methods. For instance if you implement a method called
get() it means it will respond to 'GET' requests and
the dispatch_request() implementation will automatically
forward your request to that. Also options is set for you
automatically:

class CounterAPI(MethodView):

 def get(self):
 return session.get('counter', 0)

 def post(self):
 session['counter'] = session.get('counter', 0) + 1
 return 'OK'

app.add_url_rule('/counter', view_func=CounterAPI.as_view('counter'))

URL Route Registrations

Generally there are three ways to define rules for the routing system:

	You can use the flask.Flask.route() decorator.

	You can use the flask.Flask.add_url_rule() function.

	You can directly access the underlying Werkzeug routing system
which is exposed as flask.Flask.url_map.

Variable parts in the route can be specified with angular brackets
(/user/<username>). By default a variable part in the URL accepts any
string without a slash however a different converter can be specified as
well by using <converter:name>.

Variable parts are passed to the view function as keyword arguments.

The following converters are available:

	string
	accepts any text without a slash (the default)

	int
	accepts integers

	float
	like int but for floating point values

	path
	like the default but also accepts slashes

	any
	matches one of the items provided

	uuid
	accepts UUID strings

Custom converters can be defined using flask.Flask.url_map.

Here are some examples:

@app.route('/')
def index():
 pass

@app.route('/<username>')
def show_user(username):
 pass

@app.route('/post/<int:post_id>')
def show_post(post_id):
 pass

An important detail to keep in mind is how Flask deals with trailing
slashes. The idea is to keep each URL unique so the following rules
apply:

	If a rule ends with a slash and is requested without a slash by the
user, the user is automatically redirected to the same page with a
trailing slash attached.

	If a rule does not end with a trailing slash and the user requests the
page with a trailing slash, a 404 not found is raised.

This is consistent with how web servers deal with static files. This
also makes it possible to use relative link targets safely.

You can also define multiple rules for the same function. They have to be
unique however. Defaults can also be specified. Here for example is a
definition for a URL that accepts an optional page:

@app.route('/users/', defaults={'page': 1})
@app.route('/users/page/<int:page>')
def show_users(page):
 pass

This specifies that /users/ will be the URL for page one and
/users/page/N will be the URL for page N.

Here are the parameters that route() and
add_url_rule() accept. The only difference is that
with the route parameter the view function is defined with the decorator
instead of the view_func parameter.

	rule
	the URL rule as string

	endpoint
	the endpoint for the registered URL rule. Flask itself
assumes that the name of the view function is the name
of the endpoint if not explicitly stated.

	view_func
	the function to call when serving a request to the
provided endpoint. If this is not provided one can
specify the function later by storing it in the
view_functions dictionary with the
endpoint as key.

	defaults
	A dictionary with defaults for this rule. See the
example above for how defaults work.

	subdomain
	specifies the rule for the subdomain in case subdomain
matching is in use. If not specified the default
subdomain is assumed.

	**options
	the options to be forwarded to the underlying
Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule] object. A change to
Werkzeug is handling of method options. methods is a list
of methods this rule should be limited to (GET, POST
etc.). By default a rule just listens for GET (and
implicitly HEAD). Starting with Flask 0.6, OPTIONS is
implicitly added and handled by the standard request
handling. They have to be specified as keyword arguments.

View Function Options

For internal usage the view functions can have some attributes attached to
customize behavior the view function would normally not have control over.
The following attributes can be provided optionally to either override
some defaults to add_url_rule() or general behavior:

	__name__: The name of a function is by default used as endpoint. If
endpoint is provided explicitly this value is used. Additionally this
will be prefixed with the name of the blueprint by default which
cannot be customized from the function itself.

	methods: If methods are not provided when the URL rule is added,
Flask will look on the view function object itself if a methods
attribute exists. If it does, it will pull the information for the
methods from there.

	provide_automatic_options: if this attribute is set Flask will
either force enable or disable the automatic implementation of the
HTTP OPTIONS response. This can be useful when working with
decorators that want to customize the OPTIONS response on a per-view
basis.

	required_methods: if this attribute is set, Flask will always add
these methods when registering a URL rule even if the methods were
explicitly overridden in the route() call.

Full example:

def index():
 if request.method == 'OPTIONS':
 # custom options handling here
 ...
 return 'Hello World!'
index.provide_automatic_options = False
index.methods = ['GET', 'OPTIONS']

app.add_url_rule('/', index)

New in version 0.8: The provide_automatic_options functionality was added.

Command Line Interface

	
class flask.cli.FlaskGroup(add_default_commands=True, create_app=None, add_version_option=True, **extra)

	Special subclass of the AppGroup group that supports
loading more commands from the configured Flask app. Normally a
developer does not have to interface with this class but there are
some very advanced use cases for which it makes sense to create an
instance of this.

For information as of why this is useful see Custom Scripts.

	Parameters:	
	add_default_commands – if this is True then the default run and
shell commands wil be added.

	add_version_option – adds the --version option.

	create_app – an optional callback that is passed the script info
and returns the loaded app.

	
class flask.cli.AppGroup(name=None, commands=None, **attrs)

	This works similar to a regular click Group [http://click.pocoo.org/api/#click.Group] but it
changes the behavior of the command() decorator so that it
automatically wraps the functions in with_appcontext().

Not to be confused with FlaskGroup.

	
command(*args, **kwargs)

	This works exactly like the method of the same name on a regular
click.Group [http://click.pocoo.org/api/#click.Group] but it wraps callbacks in with_appcontext()
unless it’s disabled by passing with_appcontext=False.

	
group(*args, **kwargs)

	This works exactly like the method of the same name on a regular
click.Group [http://click.pocoo.org/api/#click.Group] but it defaults the group class to
AppGroup.

	
class flask.cli.ScriptInfo(app_import_path=None, create_app=None)

	Help object to deal with Flask applications. This is usually not
necessary to interface with as it’s used internally in the dispatching
to click. In future versions of Flask this object will most likely play
a bigger role. Typically it’s created automatically by the
FlaskGroup but you can also manually create it and pass it
onwards as click object.

	
app_import_path = None

	Optionally the import path for the Flask application.

	
create_app = None

	Optionally a function that is passed the script info to create
the instance of the application.

	
data = None

	A dictionary with arbitrary data that can be associated with
this script info.

	
load_app()

	Loads the Flask app (if not yet loaded) and returns it. Calling
this multiple times will just result in the already loaded app to
be returned.

	
flask.cli.with_appcontext(f)

	Wraps a callback so that it’s guaranteed to be executed with the
script’s application context. If callbacks are registered directly
to the app.cli object then they are wrapped with this function
by default unless it’s disabled.

	
flask.cli.pass_script_info(f)

	Marks a function so that an instance of ScriptInfo is passed
as first argument to the click callback.

	
flask.cli.run_command = <click.core.Command object>

	Runs a local development server for the Flask application.

This local server is recommended for development purposes only but it
can also be used for simple intranet deployments. By default it will
not support any sort of concurrency at all to simplify debugging. This
can be changed with the –with-threads option which will enable basic
multithreading.

The reloader and debugger are by default enabled if the debug flag of
Flask is enabled and disabled otherwise.

	
flask.cli.shell_command = <click.core.Command object>

	Runs an interactive Python shell in the context of a given
Flask application. The application will populate the default
namespace of this shell according to it’s configuration.

This is useful for executing small snippets of management code
without having to manually configuring the application.

Design Decisions in Flask

If you are curious why Flask does certain things the way it does and not
differently, this section is for you. This should give you an idea about
some of the design decisions that may appear arbitrary and surprising at
first, especially in direct comparison with other frameworks.

The Explicit Application Object

A Python web application based on WSGI has to have one central callable
object that implements the actual application. In Flask this is an
instance of the Flask class. Each Flask application has
to create an instance of this class itself and pass it the name of the
module, but why can’t Flask do that itself?

Without such an explicit application object the following code:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello World!'

Would look like this instead:

from hypothetical_flask import route

@route('/')
def index():
 return 'Hello World!'

There are three major reasons for this. The most important one is that
implicit application objects require that there may only be one instance at
the time. There are ways to fake multiple applications with a single
application object, like maintaining a stack of applications, but this
causes some problems I won’t outline here in detail. Now the question is:
when does a microframework need more than one application at the same
time? A good example for this is unittesting. When you want to test
something it can be very helpful to create a minimal application to test
specific behavior. When the application object is deleted everything it
allocated will be freed again.

Another thing that becomes possible when you have an explicit object lying
around in your code is that you can subclass the base class
(Flask) to alter specific behavior. This would not be
possible without hacks if the object were created ahead of time for you
based on a class that is not exposed to you.

But there is another very important reason why Flask depends on an
explicit instantiation of that class: the package name. Whenever you
create a Flask instance you usually pass it __name__ as package name.
Flask depends on that information to properly load resources relative
to your module. With Python’s outstanding support for reflection it can
then access the package to figure out where the templates and static files
are stored (see open_resource()). Now obviously there
are frameworks around that do not need any configuration and will still be
able to load templates relative to your application module. But they have
to use the current working directory for that, which is a very unreliable
way to determine where the application is. The current working directory
is process-wide and if you are running multiple applications in one
process (which could happen in a webserver without you knowing) the paths
will be off. Worse: many webservers do not set the working directory to
the directory of your application but to the document root which does not
have to be the same folder.

The third reason is “explicit is better than implicit”. That object is
your WSGI application, you don’t have to remember anything else. If you
want to apply a WSGI middleware, just wrap it and you’re done (though
there are better ways to do that so that you do not lose the reference
to the application object wsgi_app()).

Furthermore this design makes it possible to use a factory function to
create the application which is very helpful for unittesting and similar
things (Application Factories).

The Routing System

Flask uses the Werkzeug routing system which was designed to
automatically order routes by complexity. This means that you can declare
routes in arbitrary order and they will still work as expected. This is a
requirement if you want to properly implement decorator based routing
since decorators could be fired in undefined order when the application is
split into multiple modules.

Another design decision with the Werkzeug routing system is that routes
in Werkzeug try to ensure that URLs are unique. Werkzeug will go quite far
with that in that it will automatically redirect to a canonical URL if a route
is ambiguous.

One Template Engine

Flask decides on one template engine: Jinja2. Why doesn’t Flask have a
pluggable template engine interface? You can obviously use a different
template engine, but Flask will still configure Jinja2 for you. While
that limitation that Jinja2 is always configured will probably go away,
the decision to bundle one template engine and use that will not.

Template engines are like programming languages and each of those engines
has a certain understanding about how things work. On the surface they
all work the same: you tell the engine to evaluate a template with a set
of variables and take the return value as string.

But that’s about where similarities end. Jinja2 for example has an
extensive filter system, a certain way to do template inheritance, support
for reusable blocks (macros) that can be used from inside templates and
also from Python code, uses Unicode for all operations, supports
iterative template rendering, configurable syntax and more. On the other
hand an engine like Genshi is based on XML stream evaluation, template
inheritance by taking the availability of XPath into account and more.
Mako on the other hand treats templates similar to Python modules.

When it comes to connecting a template engine with an application or
framework there is more than just rendering templates. For instance,
Flask uses Jinja2’s extensive autoescaping support. Also it provides
ways to access macros from Jinja2 templates.

A template abstraction layer that would not take the unique features of
the template engines away is a science on its own and a too large
undertaking for a microframework like Flask.

Furthermore extensions can then easily depend on one template language
being present. You can easily use your own templating language, but an
extension could still depend on Jinja itself.

Micro with Dependencies

Why does Flask call itself a microframework and yet it depends on two
libraries (namely Werkzeug and Jinja2). Why shouldn’t it? If we look
over to the Ruby side of web development there we have a protocol very
similar to WSGI. Just that it’s called Rack there, but besides that it
looks very much like a WSGI rendition for Ruby. But nearly all
applications in Ruby land do not work with Rack directly, but on top of a
library with the same name. This Rack library has two equivalents in
Python: WebOb (formerly Paste) and Werkzeug. Paste is still around but
from my understanding it’s sort of deprecated in favour of WebOb. The
development of WebOb and Werkzeug started side by side with similar ideas
in mind: be a good implementation of WSGI for other applications to take
advantage.

Flask is a framework that takes advantage of the work already done by
Werkzeug to properly interface WSGI (which can be a complex task at
times). Thanks to recent developments in the Python package
infrastructure, packages with dependencies are no longer an issue and
there are very few reasons against having libraries that depend on others.

Thread Locals

Flask uses thread local objects (context local objects in fact, they
support greenlet contexts as well) for request, session and an extra
object you can put your own things on (g). Why is that and
isn’t that a bad idea?

Yes it is usually not such a bright idea to use thread locals. They cause
troubles for servers that are not based on the concept of threads and make
large applications harder to maintain. However Flask is just not designed
for large applications or asynchronous servers. Flask wants to make it
quick and easy to write a traditional web application.

Also see the Becoming Big section of the documentation for some
inspiration for larger applications based on Flask.

What Flask is, What Flask is Not

Flask will never have a database layer. It will not have a form library
or anything else in that direction. Flask itself just bridges to Werkzeug
to implement a proper WSGI application and to Jinja2 to handle templating.
It also binds to a few common standard library packages such as logging.
Everything else is up for extensions.

Why is this the case? Because people have different preferences and
requirements and Flask could not meet those if it would force any of this
into the core. The majority of web applications will need a template
engine in some sort. However not every application needs a SQL database.

The idea of Flask is to build a good foundation for all applications.
Everything else is up to you or extensions.

HTML/XHTML FAQ

The Flask documentation and example applications are using HTML5. You
may notice that in many situations, when end tags are optional they are
not used, so that the HTML is cleaner and faster to load. Because there
is much confusion about HTML and XHTML among developers, this document tries
to answer some of the major questions.

History of XHTML

For a while, it appeared that HTML was about to be replaced by XHTML.
However, barely any websites on the Internet are actual XHTML (which is
HTML processed using XML rules). There are a couple of major reasons
why this is the case. One of them is Internet Explorer’s lack of proper
XHTML support. The XHTML spec states that XHTML must be served with the MIME
type application/xhtml+xml, but Internet Explorer refuses to read files
with that MIME type.
While it is relatively easy to configure Web servers to serve XHTML properly,
few people do. This is likely because properly using XHTML can be quite
painful.

One of the most important causes of pain is XML’s draconian (strict and
ruthless) error handling. When an XML parsing error is encountered,
the browser is supposed to show the user an ugly error message, instead
of attempting to recover from the error and display what it can. Most of
the (X)HTML generation on the web is based on non-XML template engines
(such as Jinja, the one used in Flask) which do not protect you from
accidentally creating invalid XHTML. There are XML based template engines,
such as Kid and the popular Genshi, but they often come with a larger
runtime overhead and are not as straightforward to use because they have
to obey XML rules.

The majority of users, however, assumed they were properly using XHTML.
They wrote an XHTML doctype at the top of the document and self-closed all
the necessary tags (
 becomes
 or
</br> in XHTML).
However, even if the document properly validates as XHTML, what really
determines XHTML/HTML processing in browsers is the MIME type, which as
said before is often not set properly. So the valid XHTML was being treated
as invalid HTML.

XHTML also changed the way JavaScript is used. To properly work with XHTML,
programmers have to use the namespaced DOM interface with the XHTML
namespace to query for HTML elements.

History of HTML5

Development of the HTML5 specification was started in 2004 under the name
“Web Applications 1.0” by the Web Hypertext Application Technology Working
Group, or WHATWG (which was formed by the major browser vendors Apple,
Mozilla, and Opera) with the goal of writing a new and improved HTML
specification, based on existing browser behavior instead of unrealistic
and backwards-incompatible specifications.

For example, in HTML4 <title/Hello/ theoretically parses exactly the
same as <title>Hello</title>. However, since people were using
XHTML-like tags along the lines of <link />, browser vendors implemented
the XHTML syntax over the syntax defined by the specification.

In 2007, the specification was adopted as the basis of a new HTML
specification under the umbrella of the W3C, known as HTML5. Currently,
it appears that XHTML is losing traction, as the XHTML 2 working group has
been disbanded and HTML5 is being implemented by all major browser vendors.

HTML versus XHTML

The following table gives you a quick overview of features available in
HTML 4.01, XHTML 1.1 and HTML5. (XHTML 1.0 is not included, as it was
superseded by XHTML 1.1 and the barely-used XHTML5.)

	
	HTML4.01
	XHTML1.1
	HTML5

	<tag/value/ == <tag>value</tag>
	[image: Yes] [1]
	[image: No]
	[image: No]

	
 supported
	[image: No]
	[image: Yes]
	[image: Yes] [2]

	<script/> supported
	[image: No]
	[image: Yes]
	[image: No]

	should be served as text/html
	[image: Yes]
	[image: No] [3]
	[image: Yes]

	should be served as
application/xhtml+xml
	[image: No]
	[image: Yes]
	[image: No]

	strict error handling
	[image: No]
	[image: Yes]
	[image: No]

	inline SVG
	[image: No]
	[image: Yes]
	[image: Yes]

	inline MathML
	[image: No]
	[image: Yes]
	[image: Yes]

	<video> tag
	[image: No]
	[image: No]
	[image: Yes]

	<audio> tag
	[image: No]
	[image: No]
	[image: Yes]

	New semantic tags like <article>
	[image: No]
	[image: No]
	[image: Yes]

	[1]	This is an obscure feature inherited from SGML. It is usually not
supported by browsers, for reasons detailed above.

	[2]	This is for compatibility with server code that generates XHTML for
tags such as
. It should not be used in new code.

	[3]	XHTML 1.0 is the last XHTML standard that allows to be served
as text/html for backwards compatibility reasons.

What does “strict” mean?

HTML5 has strictly defined parsing rules, but it also specifies exactly
how a browser should react to parsing errors - unlike XHTML, which simply
states parsing should abort. Some people are confused by apparently
invalid syntax that still generates the expected results (for example,
missing end tags or unquoted attribute values).

Some of these work because of the lenient error handling most browsers use
when they encounter a markup error, others are actually specified. The
following constructs are optional in HTML5 by standard, but have to be
supported by browsers:

	Wrapping the document in an <html> tag

	Wrapping header elements in <head> or the body elements in
<body>

	Closing the <p>, , <dt>, <dd>, <tr>,
<td>, <th>, <tbody>, <thead>, or <tfoot> tags.

	Quoting attributes, so long as they contain no whitespace or
special characters (like <, >, ', or ").

	Requiring boolean attributes to have a value.

This means the following page in HTML5 is perfectly valid:

<!doctype html>
<title>Hello HTML5</title>
<div class=header>
 <h1>Hello HTML5</h1>
 <p class=tagline>HTML5 is awesome
</div>
<ul class=nav>
 Index
 Downloads
 About

<div class=body>
 <h2>HTML5 is probably the future</h2>
 <p>
 There might be some other things around but in terms of
 browser vendor support, HTML5 is hard to beat.
 <dl>
 <dt>Key 1
 <dd>Value 1
 <dt>Key 2
 <dd>Value 2
 </dl>
</div>

New technologies in HTML5

HTML5 adds many new features that make Web applications easier to write
and to use.

	The <audio> and <video> tags provide a way to embed audio and
video without complicated add-ons like QuickTime or Flash.

	Semantic elements like <article>, <header>, <nav>, and
<time> that make content easier to understand.

	The <canvas> tag, which supports a powerful drawing API, reducing
the need for server-generated images to present data graphically.

	New form control types like <input type="date"> that allow user
agents to make entering and validating values easier.

	Advanced JavaScript APIs like Web Storage, Web Workers, Web Sockets,
geolocation, and offline applications.

Many other features have been added, as well. A good guide to new features
in HTML5 is Mark Pilgrim’s soon-to-be-published book, Dive Into HTML5 [http://diveintohtml5.info/].
Not all of them are supported in browsers yet, however, so use caution.

What should be used?

Currently, the answer is HTML5. There are very few reasons to use XHTML
considering the latest developments in Web browsers. To summarize the
reasons given above:

	Internet Explorer (which, sadly, currently leads in market share)
has poor support for XHTML.

	Many JavaScript libraries also do not support XHTML, due to the more
complicated namespacing API it requires.

	HTML5 adds several new features, including semantic tags and the
long-awaited <audio> and <video> tags.

	It has the support of most browser vendors behind it.

	It is much easier to write, and more compact.

For most applications, it is undoubtedly better to use HTML5 than XHTML.

Security Considerations

Web applications usually face all kinds of security problems and it’s very
hard to get everything right. Flask tries to solve a few of these things
for you, but there are a couple more you have to take care of yourself.

Cross-Site Scripting (XSS)

Cross site scripting is the concept of injecting arbitrary HTML (and with
it JavaScript) into the context of a website. To remedy this, developers
have to properly escape text so that it cannot include arbitrary HTML
tags. For more information on that have a look at the Wikipedia article
on Cross-Site Scripting [http://en.wikipedia.org/wiki/Cross-site_scripting].

Flask configures Jinja2 to automatically escape all values unless
explicitly told otherwise. This should rule out all XSS problems caused
in templates, but there are still other places where you have to be
careful:

	generating HTML without the help of Jinja2

	calling Markup on data submitted by users

	sending out HTML from uploaded files, never do that, use the
Content-Disposition: attachment header to prevent that problem.

	sending out textfiles from uploaded files. Some browsers are using
content-type guessing based on the first few bytes so users could
trick a browser to execute HTML.

Another thing that is very important are unquoted attributes. While
Jinja2 can protect you from XSS issues by escaping HTML, there is one
thing it cannot protect you from: XSS by attribute injection. To counter
this possible attack vector, be sure to always quote your attributes with
either double or single quotes when using Jinja expressions in them:

the text

Why is this necessary? Because if you would not be doing that, an
attacker could easily inject custom JavaScript handlers. For example an
attacker could inject this piece of HTML+JavaScript:

onmouseover=alert(document.cookie)

When the user would then move with the mouse over the link, the cookie
would be presented to the user in an alert window. But instead of showing
the cookie to the user, a good attacker might also execute any other
JavaScript code. In combination with CSS injections the attacker might
even make the element fill out the entire page so that the user would
just have to have the mouse anywhere on the page to trigger the attack.

Cross-Site Request Forgery (CSRF)

Another big problem is CSRF. This is a very complex topic and I won’t
outline it here in detail just mention what it is and how to theoretically
prevent it.

If your authentication information is stored in cookies, you have implicit
state management. The state of “being logged in” is controlled by a
cookie, and that cookie is sent with each request to a page.
Unfortunately that includes requests triggered by 3rd party sites. If you
don’t keep that in mind, some people might be able to trick your
application’s users with social engineering to do stupid things without
them knowing.

Say you have a specific URL that, when you sent POST requests to will
delete a user’s profile (say http://example.com/user/delete). If an
attacker now creates a page that sends a post request to that page with
some JavaScript they just have to trick some users to load that page and
their profiles will end up being deleted.

Imagine you were to run Facebook with millions of concurrent users and
someone would send out links to images of little kittens. When users
would go to that page, their profiles would get deleted while they are
looking at images of fluffy cats.

How can you prevent that? Basically for each request that modifies
content on the server you would have to either use a one-time token and
store that in the cookie and also transmit it with the form data.
After receiving the data on the server again, you would then have to
compare the two tokens and ensure they are equal.

Why does Flask not do that for you? The ideal place for this to happen is
the form validation framework, which does not exist in Flask.

JSON Security

In Flask 0.10 and lower, jsonify() did not serialize top-level
arrays to JSON. This was because of a security vulnerability in ECMAScript 4.

ECMAScript 5 closed this vulnerability, so only extremely old browsers are
still vulnerable. All of these browsers have other more serious
vulnerabilities [https://github.com/pallets/flask/issues/248#issuecomment-59934857], so
this behavior was changed and jsonify() now supports serializing
arrays.

Unicode in Flask

Flask, like Jinja2 and Werkzeug, is totally Unicode based when it comes to
text. Not only these libraries, also the majority of web related Python
libraries that deal with text. If you don’t know Unicode so far, you
should probably read The Absolute Minimum Every Software Developer
Absolutely, Positively Must Know About Unicode and Character Sets [http://www.joelonsoftware.com/articles/Unicode.html]. This part of the
documentation just tries to cover the very basics so that you have a
pleasant experience with Unicode related things.

Automatic Conversion

Flask has a few assumptions about your application (which you can change
of course) that give you basic and painless Unicode support:

	the encoding for text on your website is UTF-8

	internally you will always use Unicode exclusively for text except
for literal strings with only ASCII character points.

	encoding and decoding happens whenever you are talking over a protocol
that requires bytes to be transmitted.

So what does this mean to you?

HTTP is based on bytes. Not only the protocol, also the system used to
address documents on servers (so called URIs or URLs). However HTML which
is usually transmitted on top of HTTP supports a large variety of
character sets and which ones are used, are transmitted in an HTTP header.
To not make this too complex Flask just assumes that if you are sending
Unicode out you want it to be UTF-8 encoded. Flask will do the encoding
and setting of the appropriate headers for you.

The same is true if you are talking to databases with the help of
SQLAlchemy or a similar ORM system. Some databases have a protocol that
already transmits Unicode and if they do not, SQLAlchemy or your other ORM
should take care of that.

The Golden Rule

So the rule of thumb: if you are not dealing with binary data, work with
Unicode. What does working with Unicode in Python 2.x mean?

	as long as you are using ASCII charpoints only (basically numbers,
some special characters of latin letters without umlauts or anything
fancy) you can use regular string literals ('Hello World').

	if you need anything else than ASCII in a string you have to mark
this string as Unicode string by prefixing it with a lowercase u.
(like u'Hänsel und Gretel')

	if you are using non-Unicode characters in your Python files you have
to tell Python which encoding your file uses. Again, I recommend
UTF-8 for this purpose. To tell the interpreter your encoding you can
put the # -*- coding: utf-8 -*- into the first or second line of
your Python source file.

	Jinja is configured to decode the template files from UTF-8. So make
sure to tell your editor to save the file as UTF-8 there as well.

Encoding and Decoding Yourself

If you are talking with a filesystem or something that is not really based
on Unicode you will have to ensure that you decode properly when working
with Unicode interface. So for example if you want to load a file on the
filesystem and embed it into a Jinja2 template you will have to decode it
from the encoding of that file. Here the old problem that text files do
not specify their encoding comes into play. So do yourself a favour and
limit yourself to UTF-8 for text files as well.

Anyways. To load such a file with Unicode you can use the built-in
str.decode() method:

def read_file(filename, charset='utf-8'):
 with open(filename, 'r') as f:
 return f.read().decode(charset)

To go from Unicode into a specific charset such as UTF-8 you can use the
unicode.encode() method:

def write_file(filename, contents, charset='utf-8'):
 with open(filename, 'w') as f:
 f.write(contents.encode(charset))

Configuring Editors

Most editors save as UTF-8 by default nowadays but in case your editor is
not configured to do this you have to change it. Here some common ways to
set your editor to store as UTF-8:

	Vim: put set enc=utf-8 to your .vimrc file.

	Emacs: either use an encoding cookie or put this into your .emacs
file:

(prefer-coding-system 'utf-8)
(setq default-buffer-file-coding-system 'utf-8)

	Notepad++:

	Go to Settings -> Preferences ...

	Select the “New Document/Default Directory” tab

	Select “UTF-8 without BOM” as encoding

It is also recommended to use the Unix newline format, you can select
it in the same panel but this is not a requirement.

Flask Extension Development

Flask, being a microframework, often requires some repetitive steps to get
a third party library working. Because very often these steps could be
abstracted to support multiple projects the Flask Extension Registry [http://flask.pocoo.org/extensions/]
was created.

If you want to create your own Flask extension for something that does not
exist yet, this guide to extension development will help you get your
extension running in no time and to feel like users would expect your
extension to behave.

Anatomy of an Extension

Extensions are all located in a package called flask_something
where “something” is the name of the library you want to bridge. So for
example if you plan to add support for a library named simplexml to
Flask, you would name your extension’s package flask_simplexml.

The name of the actual extension (the human readable name) however would
be something like “Flask-SimpleXML”. Make sure to include the name
“Flask” somewhere in that name and that you check the capitalization.
This is how users can then register dependencies to your extension in
their setup.py files.

Flask sets up a redirect package called flask.ext where users
should import the extensions from. If you for instance have a package
called flask_something users would import it as
flask.ext.something. This is done to transition from the old
namespace packages. See Extension Import Transition for more details.

But what do extensions look like themselves? An extension has to ensure
that it works with multiple Flask application instances at once. This is
a requirement because many people will use patterns like the
Application Factories pattern to create their application as needed to aid
unittests and to support multiple configurations. Because of that it is
crucial that your application supports that kind of behavior.

Most importantly the extension must be shipped with a setup.py file and
registered on PyPI. Also the development checkout link should work so
that people can easily install the development version into their
virtualenv without having to download the library by hand.

Flask extensions must be licensed under a BSD, MIT or more liberal license
to be able to be enlisted in the Flask Extension Registry. Keep in mind
that the Flask Extension Registry is a moderated place and libraries will
be reviewed upfront if they behave as required.

“Hello Flaskext!”

So let’s get started with creating such a Flask extension. The extension
we want to create here will provide very basic support for SQLite3.

First we create the following folder structure:

flask-sqlite3/
 flask_sqlite3.py
 LICENSE
 README

Here’s the contents of the most important files:

setup.py

The next file that is absolutely required is the setup.py file which is
used to install your Flask extension. The following contents are
something you can work with:

"""
Flask-SQLite3

This is the description for that library
"""
from setuptools import setup

setup(
 name='Flask-SQLite3',
 version='1.0',
 url='http://example.com/flask-sqlite3/',
 license='BSD',
 author='Your Name',
 author_email='your-email@example.com',
 description='Very short description',
 long_description=__doc__,
 py_modules=['flask_sqlite3'],
 # if you would be using a package instead use packages instead
 # of py_modules:
 # packages=['flask_sqlite3'],
 zip_safe=False,
 include_package_data=True,
 platforms='any',
 install_requires=[
 'Flask'
],
 classifiers=[
 'Environment :: Web Environment',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License',
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
 'Topic :: Software Development :: Libraries :: Python Modules'
]
)

That’s a lot of code but you can really just copy/paste that from existing
extensions and adapt.

flask_sqlite3.py

Now this is where your extension code goes. But how exactly should such
an extension look like? What are the best practices? Continue reading
for some insight.

Initializing Extensions

Many extensions will need some kind of initialization step. For example,
consider an application that’s currently connecting to SQLite like the
documentation suggests (Using SQLite 3 with Flask). So how does the extension
know the name of the application object?

Quite simple: you pass it to it.

There are two recommended ways for an extension to initialize:

initialization functions:

If your extension is called helloworld you might have a function
called init_helloworld(app[, extra_args]) that initializes the
extension for that application. It could attach before / after
handlers etc.

classes:

Classes work mostly like initialization functions but can later be
used to further change the behavior. For an example look at how the
OAuth extension [http://pythonhosted.org/Flask-OAuth/] works: there is an OAuth object that provides
some helper functions like OAuth.remote_app to create a reference to
a remote application that uses OAuth.

What to use depends on what you have in mind. For the SQLite 3 extension
we will use the class-based approach because it will provide users with an
object that handles opening and closing database connections.

What’s important about classes is that they encourage to be shared around
on module level. In that case, the object itself must not under any
circumstances store any application specific state and must be shareable
between different application.

The Extension Code

Here’s the contents of the flask_sqlite3.py for copy/paste:

import sqlite3
from flask import current_app

Find the stack on which we want to store the database connection.
Starting with Flask 0.9, the _app_ctx_stack is the correct one,
before that we need to use the _request_ctx_stack.
try:
 from flask import _app_ctx_stack as stack
except ImportError:
 from flask import _request_ctx_stack as stack

class SQLite3(object):

 def __init__(self, app=None):
 self.app = app
 if app is not None:
 self.init_app(app)

 def init_app(self, app):
 app.config.setdefault('SQLITE3_DATABASE', ':memory:')
 # Use the newstyle teardown_appcontext if it's available,
 # otherwise fall back to the request context
 if hasattr(app, 'teardown_appcontext'):
 app.teardown_appcontext(self.teardown)
 else:
 app.teardown_request(self.teardown)

 def connect(self):
 return sqlite3.connect(current_app.config['SQLITE3_DATABASE'])

 def teardown(self, exception):
 ctx = stack.top
 if hasattr(ctx, 'sqlite3_db'):
 ctx.sqlite3_db.close()

 @property
 def connection(self):
 ctx = stack.top
 if ctx is not None:
 if not hasattr(ctx, 'sqlite3_db'):
 ctx.sqlite3_db = self.connect()
 return ctx.sqlite3_db

So here’s what these lines of code do:

	The __init__ method takes an optional app object and, if supplied, will
call init_app.

	The init_app method exists so that the SQLite3 object can be
instantiated without requiring an app object. This method supports the
factory pattern for creating applications. The init_app will set the
configuration for the database, defaulting to an in memory database if
no configuration is supplied. In addition, the init_app method attaches
the teardown handler. It will try to use the newstyle app context
handler and if it does not exist, falls back to the request context
one.

	Next, we define a connect method that opens a database connection.

	Finally, we add a connection property that on first access opens
the database connection and stores it on the context. This is also
the recommended way to handling resources: fetch resources lazily the
first time they are used.

Note here that we’re attaching our database connection to the top
application context via _app_ctx_stack.top. Extensions should use
the top context for storing their own information with a sufficiently
complex name. Note that we’re falling back to the
_request_ctx_stack.top if the application is using an older
version of Flask that does not support it.

So why did we decide on a class-based approach here? Because using our
extension looks something like this:

from flask import Flask
from flask_sqlite3 import SQLite3

app = Flask(__name__)
app.config.from_pyfile('the-config.cfg')
db = SQLite3(app)

You can then use the database from views like this:

@app.route('/')
def show_all():
 cur = db.connection.cursor()
 cur.execute(...)

Likewise if you are outside of a request but you are using Flask 0.9 or
later with the app context support, you can use the database in the same
way:

with app.app_context():
 cur = db.connection.cursor()
 cur.execute(...)

At the end of the with block the teardown handles will be executed
automatically.

Additionally, the init_app method is used to support the factory pattern
for creating apps:

db = Sqlite3()
Then later on.
app = create_app('the-config.cfg')
db.init_app(app)

Keep in mind that supporting this factory pattern for creating apps is required
for approved flask extensions (described below).

Note on init_app

As you noticed, init_app does not assign app to self. This
is intentional! Class based Flask extensions must only store the
application on the object when the application was passed to the
constructor. This tells the extension: I am not interested in using
multiple applications.

When the extension needs to find the current application and it does
not have a reference to it, it must either use the
current_app context local or change the API in a way
that you can pass the application explicitly.

Using _app_ctx_stack

In the example above, before every request, a sqlite3_db variable is
assigned to _app_ctx_stack.top. In a view function, this variable is
accessible using the connection property of SQLite3. During the
teardown of a request, the sqlite3_db connection is closed. By using
this pattern, the same connection to the sqlite3 database is accessible
to anything that needs it for the duration of the request.

If the _app_ctx_stack does not exist because the user uses
an old version of Flask, it is recommended to fall back to
_request_ctx_stack which is bound to a request.

Teardown Behavior

This is only relevant if you want to support Flask 0.6 and older

Due to the change in Flask 0.7 regarding functions that are run at the end
of the request your extension will have to be extra careful there if it
wants to continue to support older versions of Flask. The following
pattern is a good way to support both:

def close_connection(response):
 ctx = _request_ctx_stack.top
 ctx.sqlite3_db.close()
 return response

if hasattr(app, 'teardown_request'):
 app.teardown_request(close_connection)
else:
 app.after_request(close_connection)

Strictly speaking the above code is wrong, because teardown functions are
passed the exception and typically don’t return anything. However because
the return value is discarded this will just work assuming that the code
in between does not touch the passed parameter.

Learn from Others

This documentation only touches the bare minimum for extension
development. If you want to learn more, it’s a very good idea to check
out existing extensions on the Flask Extension Registry [http://flask.pocoo.org/extensions/]. If you feel
lost there is still the mailinglist [http://flask.pocoo.org/mailinglist/] and the IRC channel [http://flask.pocoo.org/community/irc/] to get some
ideas for nice looking APIs. Especially if you do something nobody before
you did, it might be a very good idea to get some more input. This not
only to get an idea about what people might want to have from an
extension, but also to avoid having multiple developers working on pretty
much the same side by side.

Remember: good API design is hard, so introduce your project on the
mailinglist, and let other developers give you a helping hand with
designing the API.

The best Flask extensions are extensions that share common idioms for the
API. And this can only work if collaboration happens early.

Approved Extensions

Flask also has the concept of approved extensions. Approved extensions
are tested as part of Flask itself to ensure extensions do not break on
new releases. These approved extensions are listed on the Flask
Extension Registry [http://flask.pocoo.org/extensions/] and marked appropriately. If you want your own
extension to be approved you have to follow these guidelines:

	An approved Flask extension requires a maintainer. In the event an
extension author would like to move beyond the project, the project should
find a new maintainer including full source hosting transition and PyPI
access. If no maintainer is available, give access to the Flask core team.

	An approved Flask extension must provide exactly one package or module
named flask_extensionname.

	It must ship a testing suite that can either be invoked with make test
or python setup.py test. For test suites invoked with make
test the extension has to ensure that all dependencies for the test
are installed automatically. If tests are invoked with python setup.py
test, test dependencies can be specified in the setup.py file. The
test suite also has to be part of the distribution.

	APIs of approved extensions will be checked for the following
characteristics:
	an approved extension has to support multiple applications
running in the same Python process.

	it must be possible to use the factory pattern for creating
applications.

	The license must be BSD/MIT/WTFPL licensed.

	The naming scheme for official extensions is Flask-ExtensionName or
ExtensionName-Flask.

	Approved extensions must define all their dependencies in the
setup.py file unless a dependency cannot be met because it is not
available on PyPI.

	The extension must have documentation that uses one of the two Flask
themes for Sphinx documentation.

	The setup.py description (and thus the PyPI description) has to
link to the documentation, website (if there is one) and there
must be a link to automatically install the development version
(PackageName==dev).

	The zip_safe flag in the setup script must be set to False,
even if the extension would be safe for zipping.

	An extension currently has to support Python 2.6 as well as
Python 2.7

Extension Import Transition

In early versions of Flask we recommended using namespace packages for Flask
extensions, of the form flaskext.foo. This turned out to be problematic in
practice because it meant that multiple flaskext packages coexist.
Consequently we have recommended to name extensions flask_foo over
flaskext.foo for a long time.

Flask 0.8 introduced a redirect import system as a compatibility aid for app
developers: Importing flask.ext.foo would try flask_foo and
flaskext.foo in that order.

As of Flask 0.11, most Flask extensions have transitioned to the new naming
schema. The flask.ext.foo compatibility alias is still in Flask 0.11 but is
now deprecated – you should use flask_foo.

Pocoo Styleguide

The Pocoo styleguide is the styleguide for all Pocoo Projects, including
Flask. This styleguide is a requirement for Patches to Flask and a
recommendation for Flask extensions.

In general the Pocoo Styleguide closely follows PEP 8 [https://www.python.org/dev/peps/pep-0008] with some small
differences and extensions.

General Layout

	Indentation:

	4 real spaces. No tabs, no exceptions.

	Maximum line length:

	79 characters with a soft limit for 84 if absolutely necessary. Try
to avoid too nested code by cleverly placing break, continue and
return statements.

	Continuing long statements:

	To continue a statement you can use backslashes in which case you should
align the next line with the last dot or equal sign, or indent four
spaces:

this_is_a_very_long(function_call, 'with many parameters') \
 .that_returns_an_object_with_an_attribute

MyModel.query.filter(MyModel.scalar > 120) \
 .order_by(MyModel.name.desc()) \
 .limit(10)

If you break in a statement with parentheses or braces, align to the
braces:

this_is_a_very_long(function_call, 'with many parameters',
 23, 42, 'and even more')

For lists or tuples with many items, break immediately after the
opening brace:

items = [
 'this is the first', 'set of items', 'with more items',
 'to come in this line', 'like this'
]

	Blank lines:

	Top level functions and classes are separated by two lines, everything
else by one. Do not use too many blank lines to separate logical
segments in code. Example:

def hello(name):
 print 'Hello %s!' % name

def goodbye(name):
 print 'See you %s.' % name

class MyClass(object):
 """This is a simple docstring"""

 def __init__(self, name):
 self.name = name

 def get_annoying_name(self):
 return self.name.upper() + '!!!!111'

Expressions and Statements

	General whitespace rules:

	
	No whitespace for unary operators that are not words
(e.g.: -, ~ etc.) as well on the inner side of parentheses.

	Whitespace is placed between binary operators.

Good:

exp = -1.05
value = (item_value / item_count) * offset / exp
value = my_list[index]
value = my_dict['key']

Bad:

exp = - 1.05
value = (item_value / item_count) * offset / exp
value = (item_value/item_count)*offset/exp
value=(item_value/item_count) * offset/exp
value = my_list[index]
value = my_dict ['key']

	Yoda statements are a no-go:

	Never compare constant with variable, always variable with constant:

Good:

if method == 'md5':
 pass

Bad:

if 'md5' == method:
 pass

	Comparisons:

	
	against arbitrary types: == and !=

	against singletons with is and is not (eg: foo is not
None)

	never compare something with True or False (for example never
do foo == False, do not foo instead)

	Negated containment checks:

	use foo not in bar instead of not foo in bar

	Instance checks:

	isinstance(a, C) instead of type(A) is C, but try to avoid
instance checks in general. Check for features.

Naming Conventions

	Class names: CamelCase, with acronyms kept uppercase (HTTPWriter
and not HttpWriter)

	Variable names: lowercase_with_underscores

	Method and function names: lowercase_with_underscores

	Constants: UPPERCASE_WITH_UNDERSCORES

	precompiled regular expressions: name_re

Protected members are prefixed with a single underscore. Double
underscores are reserved for mixin classes.

On classes with keywords, trailing underscores are appended. Clashes with
builtins are allowed and must not be resolved by appending an
underline to the variable name. If the function needs to access a
shadowed builtin, rebind the builtin to a different name instead.

	Function and method arguments:

	
	class methods: cls as first parameter

	instance methods: self as first parameter

	lambdas for properties might have the first parameter replaced
with x like in display_name = property(lambda x: x.real_name
or x.username)

Docstrings

	Docstring conventions:

	All docstrings are formatted with reStructuredText as understood by
Sphinx. Depending on the number of lines in the docstring, they are
laid out differently. If it’s just one line, the closing triple
quote is on the same line as the opening, otherwise the text is on
the same line as the opening quote and the triple quote that closes
the string on its own line:

def foo():
 """This is a simple docstring"""

def bar():
 """This is a longer docstring with so much information in there
 that it spans three lines. In this case the closing triple quote
 is on its own line.
 """

	Module header:

	The module header consists of an utf-8 encoding declaration (if non
ASCII letters are used, but it is recommended all the time) and a
standard docstring:

-*- coding: utf-8 -*-
"""
 package.module
    ~~~~~~~~~~~~~~

    A brief description goes here.

    :copyright: (c) YEAR by AUTHOR.
    :license: LICENSE_NAME, see LICENSE_FILE for more details.
"""





Please keep in mind that proper copyrights and license files are a
requirement for approved Flask extensions.








Comments

Rules for comments are similar to docstrings.  Both are formatted with
reStructuredText.  If a comment is used to document an attribute, put a
colon after the opening pound sign (#):

class User(object):
    #: the name of the user as unicode string
    name = Column(String)
    #: the sha1 hash of the password + inline salt
    pw_hash = Column(String)











          

      

      

    

  

    
      
          
            
  
Python 3 Support

Flask, its dependencies, and most Flask extensions support Python 3.
You should start using Python 3 for your next project,
but there are a few things to be aware of.

You need to use Python 3.3 or higher.  3.2 and older are not supported.

You should use the latest versions of all Flask-related packages.
Flask 0.10 and Werkzeug 0.9 were the first versions to introduce Python 3 support.

Python 3 changed how unicode and bytes are handled, which complicates how low
level code handles HTTP data.  This mainly affects WSGI middleware interacting
with the WSGI environ data.  Werkzeug wraps that information in high-level
helpers, so encoding issues should not affect you.

The majority of the upgrade work is in the lower-level libraries like
Flask and Werkzeug, not the high-level application code.
For example, all of the examples in the Flask repository work on both Python 2 and 3
and did not require a single line of code changed.





          

      

      

    

  

    
      
          
            
  
Upgrading to Newer Releases

Flask itself is changing like any software is changing over time.  Most of
the changes are the nice kind, the kind where you don’t have to change
anything in your code to profit from a new release.

However every once in a while there are changes that do require some
changes in your code or there are changes that make it possible for you to
improve your own code quality by taking advantage of new features in
Flask.

This section of the documentation enumerates all the changes in Flask from
release to release and how you can change your code to have a painless
updating experience.

Use the pip command to upgrade your existing Flask installation by
providing the --upgrade parameter:

$ pip install --upgrade Flask






Version 0.12


Changes to send_file

The filename is no longer automatically inferred from file-like objects.
This means that the following code will no longer automatically have
X-Sendfile support, etag generation or MIME-type guessing:

response = send_file(open('/path/to/file.txt'))





Any of the following is functionally equivalent:

fname = '/path/to/file.txt'

# Just pass the filepath directly
response = send_file(fname)

# Set the MIME-type and ETag explicitly
response = send_file(open(fname), mimetype='text/plain')
response.set_etag(...)

# Set `attachment_filename` for MIME-type guessing
# ETag still needs to be manually set
response = send_file(open(fname), attachment_filename=fname)
response.set_etag(...)





The reason for this is that some file-like objects have a invalid or even
misleading name attribute. Silently swallowing errors in such cases was not
a satisfying solution.

Additionally the default of falling back to application/octet-stream has
been restricted. If Flask can’t guess one or the user didn’t provide one, the
function fails if no filename information was provided.






Version 0.11

0.11 is an odd release in the Flask release cycle because it was supposed
to be the 1.0 release.  However because there was such a long lead time up
to the release we decided to push out a 0.11 release first with some
changes removed to make the transition easier.  If you have been tracking
the master branch which was 1.0 you might see some unexpected changes.

In case you did track the master branch you will notice that flask --app
is removed now.  You need to use the environment variable to specify an
application.


Debugging

Flask 0.11 removed the debug_log_format attribute from Flask
applications.  Instead the new LOGGER_HANDLER_POLICY configuration can
be used to disable the default log handlers and custom log handlers can be
set up.




Error handling

The behavior of error handlers was changed.
The precedence of handlers used to be based on the decoration/call order of
errorhandler() and
register_error_handler(), respectively.
Now the inheritance hierarchy takes precedence and handlers for more
specific exception classes are executed instead of more general ones.
See Error handlers for specifics.

Trying to register a handler on an instance now raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].


Note

There used to be a logic error allowing you to register handlers
only for exception instances. This was unintended and plain wrong,
and therefore was replaced with the intended behavior of registering
handlers only using exception classes and HTTP error codes.






Templating

The render_template_string() function has changed to
autoescape template variables by default. This better matches the behavior
of render_template().




Extension imports

Extension imports of the form flask.ext.foo are deprecated, you should use
flask_foo.

The old form still works, but Flask will issue a
flask.exthook.ExtDeprecationWarning for each extension you import the old
way. We also provide a migration utility called flask-ext-migrate [https://github.com/pallets/flask-ext-migrate] that is supposed to
automatically rewrite your imports for this.






Version 0.10

The biggest change going from 0.9 to 0.10 is that the cookie serialization
format changed from pickle to a specialized JSON format.  This change has
been done in order to avoid the damage an attacker can do if the secret
key is leaked.  When you upgrade you will notice two major changes: all
sessions that were issued before the upgrade are invalidated and you can
only store a limited amount of types in the session.  The new sessions are
by design much more restricted to only allow JSON with a few small
extensions for tuples and strings with HTML markup.

In order to not break people’s sessions it is possible to continue using
the old session system by using the Flask-OldSessions [http://pythonhosted.org/Flask-OldSessions/] extension.

Flask also started storing the flask.g object on the application
context instead of the request context.  This change should be transparent
for you but it means that you now can store things on the g object
when there is no request context yet but an application context.  The old
flask.Flask.request_globals_class attribute was renamed to
flask.Flask.app_ctx_globals_class.




Version 0.9

The behavior of returning tuples from a function was simplified.  If you
return a tuple it no longer defines the arguments for the response object
you’re creating, it’s now always a tuple in the form (response, status,
headers) where at least one item has to be provided.  If you depend on
the old behavior, you can add it easily by subclassing Flask:

class TraditionalFlask(Flask):
    def make_response(self, rv):
        if isinstance(rv, tuple):
            return self.response_class(*rv)
        return Flask.make_response(self, rv)





If you maintain an extension that was using _request_ctx_stack
before, please consider changing to _app_ctx_stack if it makes
sense for your extension.  For instance, the app context stack makes sense for
extensions which connect to databases.  Using the app context stack instead of
the request context stack will make extensions more readily handle use cases
outside of requests.




Version 0.8

Flask introduced a new session interface system.  We also noticed that
there was a naming collision between flask.session the module that
implements sessions and flask.session which is the global session
object.  With that introduction we moved the implementation details for
the session system into a new module called flask.sessions.  If you
used the previously undocumented session support we urge you to upgrade.

If invalid JSON data was submitted Flask will now raise a
BadRequest [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest] exception instead of letting the
default ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] bubble up.  This has the advantage that you no
longer have to handle that error to avoid an internal server error showing
up for the user.  If you were catching this down explicitly in the past
as ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] you will need to change this.

Due to a bug in the test client Flask 0.7 did not trigger teardown
handlers when the test client was used in a with statement.  This was
since fixed but might require some changes in your test suites if you
relied on this behavior.




Version 0.7

In Flask 0.7 we cleaned up the code base internally a lot and did some
backwards incompatible changes that make it easier to implement larger
applications with Flask.  Because we want to make upgrading as easy as
possible we tried to counter the problems arising from these changes by
providing a script that can ease the transition.

The script scans your whole application and generates an unified diff with
changes it assumes are safe to apply.  However as this is an automated
tool it won’t be able to find all use cases and it might miss some.  We
internally spread a lot of deprecation warnings all over the place to make
it easy to find pieces of code that it was unable to upgrade.

We strongly recommend that you hand review the generated patchfile and
only apply the chunks that look good.

If you are using git as version control system for your project we
recommend applying the patch with path -p1 < patchfile.diff and then
using the interactive commit feature to only apply the chunks that look
good.

To apply the upgrade script do the following:


	Download the script: flask-07-upgrade.py [https://raw.githubusercontent.com/pallets/flask/master/scripts/flask-07-upgrade.py]



	Run it in the directory of your application:

python flask-07-upgrade.py > patchfile.diff







	Review the generated patchfile.



	Apply the patch:

patch -p1 < patchfile.diff







	If you were using per-module template folders you need to move some
templates around.  Previously if you had a folder named templates
next to a blueprint named admin the implicit template path
automatically was admin/index.html for a template file called
templates/index.html.  This no longer is the case.  Now you need
to name the template templates/admin/index.html.  The tool will
not detect this so you will have to do that on your own.





Please note that deprecation warnings are disabled by default starting
with Python 2.7.  In order to see the deprecation warnings that might be
emitted you have to enabled them with the warnings [https://docs.python.org/3/library/warnings.html#module-warnings] module.

If you are working with windows and you lack the patch command line
utility you can get it as part of various Unix runtime environments for
windows including cygwin, msysgit or ming32.  Also source control systems
like svn, hg or git have builtin support for applying unified diffs as
generated by the tool.  Check the manual of your version control system
for more information.


Bug in Request Locals

Due to a bug in earlier implementations the request local proxies now
raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] instead of an AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] when they
are unbound.  If you caught these exceptions with AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError]
before, you should catch them with RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] now.

Additionally the send_file() function is now issuing
deprecation warnings if you depend on functionality that will be removed
in Flask 0.11.  Previously it was possible to use etags and mimetypes
when file objects were passed.  This was unreliable and caused issues
for a few setups.  If you get a deprecation warning, make sure to
update your application to work with either filenames there or disable
etag attaching and attach them yourself.

Old code:

return send_file(my_file_object)
return send_file(my_file_object)





New code:

return send_file(my_file_object, add_etags=False)








Upgrading to new Teardown Handling

We streamlined the behavior of the callbacks for request handling.  For
things that modify the response the after_request()
decorators continue to work as expected, but for things that absolutely
must happen at the end of request we introduced the new
teardown_request() decorator.  Unfortunately that
change also made after-request work differently under error conditions.
It’s not consistently skipped if exceptions happen whereas previously it
might have been called twice to ensure it is executed at the end of the
request.

If you have database connection code that looks like this:

@app.after_request
def after_request(response):
    g.db.close()
    return response





You are now encouraged to use this instead:

@app.teardown_request
def after_request(exception):
    if hasattr(g, 'db'):
        g.db.close()





On the upside this change greatly improves the internal code flow and
makes it easier to customize the dispatching and error handling.  This
makes it now a lot easier to write unit tests as you can prevent closing
down of database connections for a while.  You can take advantage of the
fact that the teardown callbacks are called when the response context is
removed from the stack so a test can query the database after request
handling:

with app.test_client() as client:
    resp = client.get('/')
    # g.db is still bound if there is such a thing

# and here it's gone








Manual Error Handler Attaching

While it is still possible to attach error handlers to
Flask.error_handlers it’s discouraged to do so and in fact
deprecated.  In general we no longer recommend custom error handler
attaching via assignments to the underlying dictionary due to the more
complex internal handling to support arbitrary exception classes and
blueprints.  See Flask.errorhandler() for more information.

The proper upgrade is to change this:

app.error_handlers[403] = handle_error





Into this:

app.register_error_handler(403, handle_error)





Alternatively you should just attach the function with a decorator:

@app.errorhandler(403)
def handle_error(e):
    ...





(Note that register_error_handler() is new in Flask 0.7)




Blueprint Support

Blueprints replace the previous concept of “Modules” in Flask.  They
provide better semantics for various features and work better with large
applications.  The update script provided should be able to upgrade your
applications automatically, but there might be some cases where it fails
to upgrade.  What changed?


	Blueprints need explicit names.  Modules had an automatic name
guessing scheme where the shortname for the module was taken from the
last part of the import module.  The upgrade script tries to guess
that name but it might fail as this information could change at
runtime.

	Blueprints have an inverse behavior for url_for().  Previously
.foo told url_for() that it should look for the endpoint
foo on the application.  Now it means “relative to current module”.
The script will inverse all calls to url_for() automatically for
you.  It will do this in a very eager way so you might end up with
some unnecessary leading dots in your code if you’re not using
modules.

	Blueprints do not automatically provide static folders.  They will
also no longer automatically export templates from a folder called
templates next to their location however but it can be enabled from
the constructor.  Same with static files: if you want to continue
serving static files you need to tell the constructor explicitly the
path to the static folder (which can be relative to the blueprint’s
module path).

	Rendering templates was simplified.  Now the blueprints can provide
template folders which are added to a general template searchpath.
This means that you need to add another subfolder with the blueprint’s
name into that folder if you want blueprintname/template.html as
the template name.



If you continue to use the Module object which is deprecated, Flask will
restore the previous behavior as good as possible.  However we strongly
recommend upgrading to the new blueprints as they provide a lot of useful
improvement such as the ability to attach a blueprint multiple times,
blueprint specific error handlers and a lot more.






Version 0.6

Flask 0.6 comes with a backwards incompatible change which affects the
order of after-request handlers.  Previously they were called in the order
of the registration, now they are called in reverse order.  This change
was made so that Flask behaves more like people expected it to work and
how other systems handle request pre- and post-processing.  If you
depend on the order of execution of post-request functions, be sure to
change the order.

Another change that breaks backwards compatibility is that context
processors will no longer override values passed directly to the template
rendering function.  If for example request is as variable passed
directly to the template, the default context processor will not override
it with the current request object.  This makes it easier to extend
context processors later to inject additional variables without breaking
existing template not expecting them.




Version 0.5

Flask 0.5 is the first release that comes as a Python package instead of a
single module.  There were a couple of internal refactoring so if you
depend on undocumented internal details you probably have to adapt the
imports.

The following changes may be relevant to your application:


	autoescaping no longer happens for all templates.  Instead it is
configured to only happen on files ending with .html, .htm,
.xml and .xhtml.  If you have templates with different
extensions you should override the
select_jinja_autoescape() method.

	Flask no longer supports zipped applications in this release.  This
functionality might come back in future releases if there is demand
for this feature.  Removing support for this makes the Flask internal
code easier to understand and fixes a couple of small issues that make
debugging harder than necessary.

	The create_jinja_loader function is gone.  If you want to customize
the Jinja loader now, use the
create_jinja_environment() method instead.






Version 0.4

For application developers there are no changes that require changes in
your code.  In case you are developing on a Flask extension however, and
that extension has a unittest-mode you might want to link the activation
of that mode to the new TESTING flag.




Version 0.3

Flask 0.3 introduces configuration support and logging as well as
categories for flashing messages.  All these are features that are 100%
backwards compatible but you might want to take advantage of them.


Configuration Support

The configuration support makes it easier to write any kind of application
that requires some sort of configuration.  (Which most likely is the case
for any application out there).

If you previously had code like this:

app.debug = DEBUG
app.secret_key = SECRET_KEY





You no longer have to do that, instead you can just load a configuration
into the config object.  How this works is outlined in Configuration Handling.




Logging Integration

Flask now configures a logger for you with some basic and useful defaults.
If you run your application in production and want to profit from
automatic error logging, you might be interested in attaching a proper log
handler.  Also you can start logging warnings and errors into the logger
when appropriately.  For more information on that, read
Application Errors.




Categories for Flash Messages

Flash messages can now have categories attached.  This makes it possible
to render errors, warnings or regular messages differently for example.
This is an opt-in feature because it requires some rethinking in the code.

Read all about that in the Message Flashing pattern.









          

      

      

    

  

    
      
          
            
  
Flask Changelog

Here you can see the full list of changes between each Flask release.


Version 0.13

Major release, unreleased


	Make app.run() into a noop if a Flask application is run from the
development server on the command line.  This avoids some behavior that
was confusing to debug for newcomers.

	Change default configuration JSONIFY_PRETTYPRINT_REGULAR=False. jsonify()
method returns compressed response by default, and pretty response in
debug mode.






Version 0.12.2

Released on May 16 2017


	Fix a bug in safe_join on Windows.






Version 0.12.1

Bugfix release, released on March 31st 2017


	Prevent flask run from showing a NoAppException when an ImportError occurs
within the imported application module.

	Fix encoding behavior of app.config.from_pyfile for Python 3. Fix
#2118.

	Call ctx.auto_pop with the exception object instead of None, in the
event that a BaseException such as KeyboardInterrupt is raised in a
request handler.






Version 0.12

Released on December 21st 2016, codename Punsch.


	the cli command now responds to –version.

	Mimetype guessing and ETag generation for file-like objects in send_file
has been removed, as per issue #104.  See pull request #1849.

	Mimetype guessing in send_file now fails loudly and doesn’t fall back to
application/octet-stream. See pull request #1988.

	Make flask.safe_join able to join multiple paths like os.path.join
(pull request #1730).

	Revert a behavior change that made the dev server crash instead of returning
a Internal Server Error (pull request #2006).

	Correctly invoke response handlers for both regular request dispatching as
well as error handlers.

	Disable logger propagation by default for the app logger.

	Add support for range requests in send_file.

	app.test_client includes preset default environment, which can now be
directly set, instead of per client.get.






Version 0.11.2

Bugfix release, unreleased


	Fix crash when running under PyPy3, see pull request #1814.






Version 0.11.1

Bugfix release, released on June 7th 2016.


	Fixed a bug that prevented FLASK_APP=foobar/__init__.py from working. See
pull request #1872.






Version 0.11

Released on May 29th 2016, codename Absinthe.


	Added support to serializing top-level arrays to flask.jsonify(). This
introduces a security risk in ancient browsers. See
JSON Security for details.

	Added before_render_template signal.

	Added **kwargs to flask.Test.test_client() to support passing
additional keyword arguments to the constructor of
flask.Flask.test_client_class.

	Added SESSION_REFRESH_EACH_REQUEST config key that controls the
set-cookie behavior.  If set to True a permanent session will be
refreshed each request and get their lifetime extended, if set to
False it will only be modified if the session actually modifies.
Non permanent sessions are not affected by this and will always
expire if the browser window closes.

	Made Flask support custom JSON mimetypes for incoming data.

	Added support for returning tuples in the form (response, headers)
from a view function.

	Added flask.Config.from_json().

	Added flask.Flask.config_class.

	Added flask.Config.get_namespace().

	Templates are no longer automatically reloaded outside of debug mode. This
can be configured with the new TEMPLATES_AUTO_RELOAD config key.

	Added a workaround for a limitation in Python 3.3’s namespace loader.

	Added support for explicit root paths when using Python 3.3’s namespace
packages.

	Added flask and the flask.cli module to start the local
debug server through the click CLI system.  This is recommended over the old
flask.run() method as it works faster and more reliable due to a
different design and also replaces Flask-Script.

	Error handlers that match specific classes are now checked first,
thereby allowing catching exceptions that are subclasses of HTTP
exceptions (in werkzeug.exceptions).  This makes it possible
for an extension author to create exceptions that will by default
result in the HTTP error of their choosing, but may be caught with
a custom error handler if desired.

	Added flask.Config.from_mapping().

	Flask will now log by default even if debug is disabled.  The log format is
now hardcoded but the default log handling can be disabled through the
LOGGER_HANDLER_POLICY configuration key.

	Removed deprecated module functionality.

	Added the EXPLAIN_TEMPLATE_LOADING config flag which when enabled will
instruct Flask to explain how it locates templates.  This should help
users debug when the wrong templates are loaded.

	Enforce blueprint handling in the order they were registered for template
loading.

	Ported test suite to py.test.

	Deprecated request.json in favour of request.get_json().

	Add “pretty” and “compressed” separators definitions in jsonify() method.
Reduces JSON response size when JSONIFY_PRETTYPRINT_REGULAR=False by removing
unnecessary white space included by default after separators.

	JSON responses are now terminated with a newline character, because it is a
convention that UNIX text files end with a newline and some clients don’t
deal well when this newline is missing. See
https://github.com/pallets/flask/pull/1262 – this came up originally as a
part of https://github.com/kennethreitz/httpbin/issues/168

	The automatically provided OPTIONS method is now correctly disabled if
the user registered an overriding rule with the lowercase-version
options (issue #1288).

	flask.json.jsonify now supports the datetime.date type (pull request
#1326).

	Don’t leak exception info of already catched exceptions to context teardown
handlers (pull request #1393).

	Allow custom Jinja environment subclasses (pull request #1422).

	flask.g now has pop() and setdefault methods.

	Turn on autoescape for flask.templating.render_template_string by default
(pull request #1515).

	flask.ext is now deprecated (pull request #1484).

	send_from_directory now raises BadRequest if the filename is invalid on
the server OS (pull request #1763).

	Added the JSONIFY_MIMETYPE configuration variable (pull request #1728).

	Exceptions during teardown handling will no longer leave bad application
contexts lingering around.






Version 0.10.2

(bugfix release, release date to be announced)


	Fixed broken test_appcontext_signals() test case.

	Raise an AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] in flask.helpers.find_package() with a
useful message explaining why it is raised when a PEP 302 import hook is used
without an is_package() method.

	Fixed an issue causing exceptions raised before entering a request or app
context to be passed to teardown handlers.

	Fixed an issue with query parameters getting removed from requests in
the test client when absolute URLs were requested.

	Made @before_first_request into a decorator as intended.

	Fixed an etags bug when sending a file streams with a name.

	Fixed send_from_directory not expanding to the application root path
correctly.

	Changed logic of before first request handlers to flip the flag after
invoking.  This will allow some uses that are potentially dangerous but
should probably be permitted.

	Fixed Python 3 bug when a handler from app.url_build_error_handlers
reraises the BuildError.






Version 0.10.1

(bugfix release, released on June 14th 2013)


	Fixed an issue where |tojson was not quoting single quotes which
made the filter not work properly in HTML attributes.  Now it’s
possible to use that filter in single quoted attributes.  This should
make using that filter with angular.js easier.

	Added support for byte strings back to the session system.  This broke
compatibility with the common case of people putting binary data for
token verification into the session.

	Fixed an issue where registering the same method twice for the same endpoint
would trigger an exception incorrectly.






Version 0.10

Released on June 13th 2013, codename Limoncello.


	Changed default cookie serialization format from pickle to JSON to
limit the impact an attacker can do if the secret key leaks.  See
Version 0.10 for more information.

	Added template_test methods in addition to the already existing
template_filter method family.

	Added template_global methods in addition to the already existing
template_filter method family.

	Set the content-length header for x-sendfile.

	tojson filter now does not escape script blocks in HTML5 parsers.

	tojson used in templates is now safe by default due.  This was
allowed due to the different escaping behavior.

	Flask will now raise an error if you attempt to register a new function
on an already used endpoint.

	Added wrapper module around simplejson and added default serialization
of datetime objects.  This allows much easier customization of how
JSON is handled by Flask or any Flask extension.

	Removed deprecated internal flask.session module alias.  Use
flask.sessions instead to get the session module.  This is not to
be confused with flask.session the session proxy.

	Templates can now be rendered without request context.  The behavior is
slightly different as the request, session and g objects
will not be available and blueprint’s context processors are not
called.

	The config object is now available to the template as a real global and
not through a context processor which makes it available even in imported
templates by default.

	Added an option to generate non-ascii encoded JSON which should result
in less bytes being transmitted over the network.  It’s disabled by
default to not cause confusion with existing libraries that might expect
flask.json.dumps to return bytestrings by default.

	flask.g is now stored on the app context instead of the request
context.

	flask.g now gained a get() method for not erroring out on non
existing items.

	flask.g now can be used with the in operator to see what’s defined
and it now is iterable and will yield all attributes stored.

	flask.Flask.request_globals_class got renamed to
flask.Flask.app_ctx_globals_class which is a better name to what it
does since 0.10.

	request, session and g are now also added as proxies to the template
context which makes them available in imported templates.  One has to be
very careful with those though because usage outside of macros might
cause caching.

	Flask will no longer invoke the wrong error handlers if a proxy
exception is passed through.

	Added a workaround for chrome’s cookies in localhost not working
as intended with domain names.

	Changed logic for picking defaults for cookie values from sessions
to work better with Google Chrome.

	Added message_flashed signal that simplifies flashing testing.

	Added support for copying of request contexts for better working with
greenlets.

	Removed custom JSON HTTP exception subclasses.  If you were relying on them
you can reintroduce them again yourself trivially.  Using them however is
strongly discouraged as the interface was flawed.

	Python requirements changed: requiring Python 2.6 or 2.7 now to prepare
for Python 3.3 port.

	Changed how the teardown system is informed about exceptions.  This is now
more reliable in case something handles an exception halfway through
the error handling process.

	Request context preservation in debug mode now keeps the exception
information around which means that teardown handlers are able to
distinguish error from success cases.

	Added the JSONIFY_PRETTYPRINT_REGULAR configuration variable.

	Flask now orders JSON keys by default to not trash HTTP caches due to
different hash seeds between different workers.

	Added appcontext_pushed and appcontext_popped signals.

	The builtin run method now takes the SERVER_NAME into account when
picking the default port to run on.

	Added flask.request.get_json() as a replacement for the old
flask.request.json property.






Version 0.9

Released on July 1st 2012, codename Campari.


	The flask.Request.on_json_loading_failed() now returns a JSON formatted
response by default.

	The flask.url_for() function now can generate anchors to the
generated links.

	The flask.url_for() function now can also explicitly generate
URL rules specific to a given HTTP method.

	Logger now only returns the debug log setting if it was not set
explicitly.

	Unregister a circular dependency between the WSGI environment and
the request object when shutting down the request.  This means that
environ werkzeug.request will be None after the response was
returned to the WSGI server but has the advantage that the garbage
collector is not needed on CPython to tear down the request unless
the user created circular dependencies themselves.

	Session is now stored after callbacks so that if the session payload
is stored in the session you can still modify it in an after
request callback.

	The flask.Flask class will avoid importing the provided import name
if it can (the required first parameter), to benefit tools which build Flask
instances programmatically.  The Flask class will fall back to using import
on systems with custom module hooks, e.g. Google App Engine, or when the
import name is inside a zip archive (usually a .egg) prior to Python 2.7.

	Blueprints now have a decorator to add custom template filters application
wide, flask.Blueprint.app_template_filter().

	The Flask and Blueprint classes now have a non-decorator method for adding
custom template filters application wide,
flask.Flask.add_template_filter() and
flask.Blueprint.add_app_template_filter().

	The flask.get_flashed_messages() function now allows rendering flashed
message categories in separate blocks, through a category_filter
argument.

	The flask.Flask.run() method now accepts None for host and port
arguments, using default values when None.  This allows for calling run
using configuration values, e.g. app.run(app.config.get('MYHOST'),
app.config.get('MYPORT')), with proper behavior whether or not a config
file is provided.

	The flask.render_template() method now accepts a either an iterable of
template names or a single template name.  Previously, it only accepted a
single template name.  On an iterable, the first template found is rendered.

	Added flask.Flask.app_context() which works very similar to the
request context but only provides access to the current application.  This
also adds support for URL generation without an active request context.

	View functions can now return a tuple with the first instance being an
instance of flask.Response.  This allows for returning
jsonify(error="error msg"), 400 from a view function.

	Flask and Blueprint now provide a
get_send_file_max_age() hook for subclasses to override
behavior of serving static files from Flask when using
flask.Flask.send_static_file() (used for the default static file
handler) and send_file().  This hook is provided a
filename, which for example allows changing cache controls by file extension.
The default max-age for send_file and static files can be configured
through a new SEND_FILE_MAX_AGE_DEFAULT configuration variable, which is
used in the default get_send_file_max_age implementation.

	Fixed an assumption in sessions implementation which could break message
flashing on sessions implementations which use external storage.

	Changed the behavior of tuple return values from functions.  They are no
longer arguments to the response object, they now have a defined meaning.

	Added flask.Flask.request_globals_class to allow a specific class to
be used on creation of the g instance of each request.

	Added required_methods attribute to view functions to force-add methods
on registration.

	Added flask.after_this_request().

	Added flask.stream_with_context() and the ability to push contexts
multiple times without producing unexpected behavior.






Version 0.8.1

Bugfix release, released on July 1st 2012


	Fixed an issue with the undocumented flask.session module to not
work properly on Python 2.5.  It should not be used but did cause
some problems for package managers.






Version 0.8

Released on September 29th 2011, codename Rakija


	Refactored session support into a session interface so that
the implementation of the sessions can be changed without
having to override the Flask class.

	Empty session cookies are now deleted properly automatically.

	View functions can now opt out of getting the automatic
OPTIONS implementation.

	HTTP exceptions and Bad Request errors can now be trapped so that they
show up normally in the traceback.

	Flask in debug mode is now detecting some common problems and tries to
warn you about them.

	Flask in debug mode will now complain with an assertion error if a view
was attached after the first request was handled.  This gives earlier
feedback when users forget to import view code ahead of time.

	Added the ability to register callbacks that are only triggered once at
the beginning of the first request. (Flask.before_first_request())

	Malformed JSON data will now trigger a bad request HTTP exception instead
of a value error which usually would result in a 500 internal server
error if not handled.  This is a backwards incompatible change.

	Applications now not only have a root path where the resources and modules
are located but also an instance path which is the designated place to
drop files that are modified at runtime (uploads etc.).  Also this is
conceptually only instance depending and outside version control so it’s
the perfect place to put configuration files etc.  For more information
see Instance Folders.

	Added the APPLICATION_ROOT configuration variable.

	Implemented session_transaction() to
easily modify sessions from the test environment.

	Refactored test client internally.  The APPLICATION_ROOT configuration
variable as well as SERVER_NAME are now properly used by the test client
as defaults.

	Added flask.views.View.decorators to support simpler decorating of
pluggable (class-based) views.

	Fixed an issue where the test client if used with the “with” statement did not
trigger the execution of the teardown handlers.

	Added finer control over the session cookie parameters.

	HEAD requests to a method view now automatically dispatch to the get
method if no handler was implemented.

	Implemented the virtual flask.ext package to import extensions from.

	The context preservation on exceptions is now an integral component of
Flask itself and no longer of the test client.  This cleaned up some
internal logic and lowers the odds of runaway request contexts in unittests.






Version 0.7.3

Bugfix release, release date to be decided


	Fixed the Jinja2 environment’s list_templates method not returning the
correct names when blueprints or modules were involved.






Version 0.7.2

Bugfix release, released on July 6th 2011


	Fixed an issue with URL processors not properly working on
blueprints.






Version 0.7.1

Bugfix release, released on June 29th 2011


	Added missing future import that broke 2.5 compatibility.

	Fixed an infinite redirect issue with blueprints.






Version 0.7

Released on June 28th 2011, codename Grappa


	Added make_default_options_response()
which can be used by subclasses to alter the default
behavior for OPTIONS responses.

	Unbound locals now raise a proper RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] instead
of an AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError].

	Mimetype guessing and etag support based on file objects is now
deprecated for flask.send_file() because it was unreliable.
Pass filenames instead or attach your own etags and provide a
proper mimetype by hand.

	Static file handling for modules now requires the name of the
static folder to be supplied explicitly.  The previous autodetection
was not reliable and caused issues on Google’s App Engine.  Until
1.0 the old behavior will continue to work but issue dependency
warnings.

	fixed a problem for Flask to run on jython.

	added a PROPAGATE_EXCEPTIONS configuration variable that can be
used to flip the setting of exception propagation which previously
was linked to DEBUG alone and is now linked to either DEBUG or
TESTING.

	Flask no longer internally depends on rules being added through the
add_url_rule function and can now also accept regular werkzeug
rules added to the url map.

	Added an endpoint method to the flask application object which
allows one to register a callback to an arbitrary endpoint with
a decorator.

	Use Last-Modified for static file sending instead of Date which
was incorrectly introduced in 0.6.

	Added create_jinja_loader to override the loader creation process.

	Implemented a silent flag for config.from_pyfile.

	Added teardown_request decorator, for functions that should run at the end
of a request regardless of whether an exception occurred.  Also the behavior
for after_request was changed.  It’s now no longer executed when an exception
is raised.  See Upgrading to new Teardown Handling

	Implemented flask.has_request_context()

	Deprecated init_jinja_globals.  Override the
create_jinja_environment() method instead to
achieve the same functionality.

	Added flask.safe_join()

	The automatic JSON request data unpacking now looks at the charset
mimetype parameter.

	Don’t modify the session on flask.get_flashed_messages() if there
are no messages in the session.

	before_request handlers are now able to abort requests with errors.

	it is not possible to define user exception handlers.  That way you can
provide custom error messages from a central hub for certain errors that
might occur during request processing (for instance database connection
errors, timeouts from remote resources etc.).

	Blueprints can provide blueprint specific error handlers.

	Implemented generic Pluggable Views (class-based views).






Version 0.6.1

Bugfix release, released on December 31st 2010


	Fixed an issue where the default OPTIONS response was
not exposing all valid methods in the Allow header.

	Jinja2 template loading syntax now allows ”./” in front of
a template load path.  Previously this caused issues with
module setups.

	Fixed an issue where the subdomain setting for modules was
ignored for the static folder.

	Fixed a security problem that allowed clients to download arbitrary files
if the host server was a windows based operating system and the client
uses backslashes to escape the directory the files where exposed from.






Version 0.6

Released on July 27th 2010, codename Whisky


	after request functions are now called in reverse order of
registration.

	OPTIONS is now automatically implemented by Flask unless the
application explicitly adds ‘OPTIONS’ as method to the URL rule.
In this case no automatic OPTIONS handling kicks in.

	static rules are now even in place if there is no static folder
for the module.  This was implemented to aid GAE which will
remove the static folder if it’s part of a mapping in the .yml
file.

	the config is now available in the templates
as config.

	context processors will no longer override values passed directly
to the render function.

	added the ability to limit the incoming request data with the
new MAX_CONTENT_LENGTH configuration value.

	the endpoint for the flask.Module.add_url_rule() method
is now optional to be consistent with the function of the
same name on the application object.

	added a flask.make_response() function that simplifies
creating response object instances in views.

	added signalling support based on blinker.  This feature is currently
optional and supposed to be used by extensions and applications.  If
you want to use it, make sure to have blinker [https://pypi.python.org/pypi/blinker] installed.

	refactored the way URL adapters are created.  This process is now
fully customizable with the create_url_adapter()
method.

	modules can now register for a subdomain instead of just an URL
prefix.  This makes it possible to bind a whole module to a
configurable subdomain.






Version 0.5.2

Bugfix Release, released on July 15th 2010


	fixed another issue with loading templates from directories when
modules were used.






Version 0.5.1

Bugfix Release, released on July 6th 2010


	fixes an issue with template loading from directories when modules
where used.






Version 0.5

Released on July 6th 2010, codename Calvados


	fixed a bug with subdomains that was caused by the inability to
specify the server name.  The server name can now be set with
the SERVER_NAME config key.  This key is now also used to set
the session cookie cross-subdomain wide.

	autoescaping is no longer active for all templates.  Instead it
is only active for .html, .htm, .xml and .xhtml.
Inside templates this behavior can be changed with the
autoescape tag.

	refactored Flask internally.  It now consists of more than a
single file.

	flask.send_file() now emits etags and has the ability to
do conditional responses builtin.

	(temporarily) dropped support for zipped applications.  This was a
rarely used feature and led to some confusing behavior.

	added support for per-package template and static-file directories.

	removed support for create_jinja_loader which is no longer used
in 0.5 due to the improved module support.

	added a helper function to expose files from any directory.






Version 0.4

Released on June 18th 2010, codename Rakia


	added the ability to register application wide error handlers
from modules.

	after_request() handlers are now also invoked
if the request dies with an exception and an error handling page
kicks in.

	test client has not the ability to preserve the request context
for a little longer.  This can also be used to trigger custom
requests that do not pop the request stack for testing.

	because the Python standard library caches loggers, the name of
the logger is configurable now to better support unittests.

	added TESTING switch that can activate unittesting helpers.

	the logger switches to DEBUG mode now if debug is enabled.






Version 0.3.1

Bugfix release, released on May 28th 2010


	fixed a error reporting bug with flask.Config.from_envvar()

	removed some unused code from flask

	release does no longer include development leftover files (.git
folder for themes, built documentation in zip and pdf file and
some .pyc files)






Version 0.3

Released on May 28th 2010, codename Schnaps


	added support for categories for flashed messages.

	the application now configures a logging.Handler and will
log request handling exceptions to that logger when not in debug
mode.  This makes it possible to receive mails on server errors
for example.

	added support for context binding that does not require the use of
the with statement for playing in the console.

	the request context is now available within the with statement making
it possible to further push the request context or pop it.

	added support for configurations.






Version 0.2

Released on May 12th 2010, codename Jägermeister


	various bugfixes

	integrated JSON support

	added get_template_attribute() helper function.

	add_url_rule() can now also register a
view function.

	refactored internal request dispatching.

	server listens on 127.0.0.1 by default now to fix issues with chrome.

	added external URL support.

	added support for send_file()

	module support and internal request handling refactoring
to better support pluggable applications.

	sessions can be set to be permanent now on a per-session basis.

	better error reporting on missing secret keys.

	added support for Google Appengine.






Version 0.1

First public preview release.







          

      

      

    

  

    
      
          
            
  
License

Flask is licensed under a three clause BSD License.  It basically means:
do whatever you want with it as long as the copyright in Flask sticks
around, the conditions are not modified and the disclaimer is present.
Furthermore you must not use the names of the authors to promote derivatives
of the software without written consent.

The full license text can be found below (Flask License).  For the
documentation and artwork different licenses apply.


Authors

Flask is written and maintained by Armin Ronacher and
various contributors:


Development Lead


	Armin Ronacher <armin.ronacher@active-4.com>






Patches and Suggestions


	Adam Zapletal

	Ali Afshar

	Chris Edgemon

	Chris Grindstaff

	Christopher Grebs

	Daniel Neuhäuser

	Dan Sully

	David Lord @davidism

	Edmond Burnett

	Florent Xicluna

	Georg Brandl

	Jeff Widman @jeffwidman

	Justin Quick

	Kenneth Reitz

	Keyan Pishdadian

	Marian Sigler

	Martijn Pieters

	Matt Campell

	Matthew Frazier

	Michael van Tellingen

	Ron DuPlain

	Sebastien Estienne

	Simon Sapin

	Stephane Wirtel

	Thomas Schranz

	Zhao Xiaohong








General License Definitions

The following section contains the full license texts for Flask and the
documentation.


	“AUTHORS” hereby refers to all the authors listed in the
Authors section.

	The “Flask License” applies to all the source code shipped as
part of Flask (Flask itself as well as the examples and the unittests)
as well as documentation.

	The “Flask Artwork License” applies to the project’s Horn-Logo.






Flask License

Copyright (c) 2015 by Armin Ronacher and contributors.  See AUTHORS
for more details.

Some rights reserved.

Redistribution and use in source and binary forms of the software as well
as documentation, with or without modification, are permitted provided
that the following conditions are met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.



THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE AND DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.




Flask Artwork License

Copyright (c) 2010 by Armin Ronacher.

Some rights reserved.

This logo or a modified version may be used by anyone to refer to the
Flask project, but does not indicate endorsement by the project.

Redistribution and use in source (the SVG file) and binary forms (rendered
PNG files etc.) of the image, with or without modification, are permitted
provided that the following conditions are met:


	Redistributions of source code must retain the above copyright
notice and this list of conditions.

	The names of the contributors to the Flask software (see AUTHORS) may
not be used to endorse or promote products derived from this software
without specific prior written permission.



Note: we would appreciate that you make the image a link to
http://flask.pocoo.org/ if you use it on a web page.







          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 


_


  	
      	_app_ctx_stack (in module flask)


  

  	
      	_request_ctx_stack (in module flask)


  





A


  	
      	abort() (in module flask)


      	add_app_template_filter() (flask.Blueprint method)


      	add_app_template_global() (flask.Blueprint method)


      	add_app_template_test() (flask.Blueprint method)


      	add_template_filter() (flask.Flask method)


      	add_template_global() (flask.Flask method)


      	add_template_test() (flask.Flask method)


      	add_url_rule() (flask.Blueprint method)

      
        	(flask.Flask method)


        	(flask.blueprints.BlueprintSetupState method)


      


      	after_app_request() (flask.Blueprint method)


      	after_request() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	after_request_funcs (flask.Flask attribute)


      	after_this_request() (in module flask)


      	app (flask.blueprints.BlueprintSetupState attribute)


      	app_context() (flask.Flask method)


  

  	
      	app_context_processor() (flask.Blueprint method)


      	app_ctx_globals_class (flask.Flask attribute)


      	app_errorhandler() (flask.Blueprint method)


      	app_import_path (flask.cli.ScriptInfo attribute)


      	app_template_filter() (flask.Blueprint method)


      	app_template_global() (flask.Blueprint method)


      	app_template_test() (flask.Blueprint method)


      	app_url_defaults() (flask.Blueprint method)


      	app_url_value_preprocessor() (flask.Blueprint method)


      	AppContext (class in flask.ctx)


      	appcontext_popped (in module flask)


      	appcontext_pushed (in module flask)


      	appcontext_tearing_down (in module flask)


      	AppGroup (class in flask.cli)


      	args (flask.Request attribute)


      	as_view() (flask.views.View class method)


      	auto_find_instance_path() (flask.Flask method)


  





B


  	
      	base_url (flask.Request attribute)


      	before_app_first_request() (flask.Blueprint method)


      	before_app_request() (flask.Blueprint method)


      	before_first_request() (flask.Flask method)


      	before_first_request_funcs (flask.Flask attribute)


      	before_request() (flask.Blueprint method)

      
        	(flask.Flask method)


      


  

  	
      	before_request_funcs (flask.Flask attribute)


      	Blueprint (class in flask)


      	blueprint (flask.blueprints.BlueprintSetupState attribute)

      
        	(flask.Request attribute)


      


      	blueprints (flask.Flask attribute)


      	BlueprintSetupState (class in flask.blueprints)


  





C


  	
      	cli (flask.Flask attribute)


      	command() (flask.cli.AppGroup method)


      	Config (class in flask)


      	config (flask.Flask attribute)


      	config_class (flask.Flask attribute)


      	context_processor() (flask.Blueprint method)

      
        	(flask.Flask method)


      


  

  	
      	cookies (flask.Request attribute)


      	copy() (flask.ctx.RequestContext method)


      	copy_current_request_context() (in module flask)


      	create_app (flask.cli.ScriptInfo attribute)


      	create_global_jinja_loader() (flask.Flask method)


      	create_jinja_environment() (flask.Flask method)


      	create_url_adapter() (flask.Flask method)


      	current_app (in module flask)


  





D


  	
      	data (flask.cli.ScriptInfo attribute)

      
        	(flask.Request attribute)


        	(flask.Response attribute)


      


      	debug (flask.Flask attribute)


      	decorators (flask.views.View attribute)


      	default() (flask.json.JSONEncoder method)


      	default_config (flask.Flask attribute)


  

  	
      	digest_method() (flask.sessions.SecureCookieSessionInterface static method)


      	dispatch_request() (flask.Flask method)

      
        	(flask.views.View method)


      


      	do_teardown_appcontext() (flask.Flask method)


      	do_teardown_request() (flask.Flask method)


      	dump() (in module flask.json)


      	dumps() (in module flask.json)


  





E


  	
      	endpoint (flask.Request attribute)


      	endpoint() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	environ (flask.Request attribute)


      	
    environment variable

      
        	FLASKR_SETTINGS


        	FLASK_DEBUG


        	YOURAPPLICATION_SETTINGS


      


  

  	
      	error_handler_spec (flask.Flask attribute)


      	errorhandler() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	escape() (flask.Markup class method)

      
        	(in module flask)


      


      	extensions (flask.Flask attribute)


  





F


  	
      	files (flask.Request attribute)


      	first_registration (flask.blueprints.BlueprintSetupState attribute)


      	flash() (in module flask)


      	Flask (class in flask)


      	flask (module)


      	flask.ext (in module flask)


      	flask.json (module)


      	FLASK_DEBUG


      	FlaskClient (class in flask.testing)


  

  	
      	FlaskGroup (class in flask.cli)


      	FLASKR_SETTINGS


      	form (flask.Request attribute)


      	from_envvar() (flask.Config method)


      	from_json() (flask.Config method)


      	from_mapping() (flask.Config method)


      	from_object() (flask.Config method)


      	from_pyfile() (flask.Config method)


      	full_dispatch_request() (flask.Flask method)


      	full_path (flask.Request attribute)


  





G


  	
      	g (in module flask)


      	get_cookie_domain() (flask.sessions.SessionInterface method)


      	get_cookie_httponly() (flask.sessions.SessionInterface method)


      	get_cookie_path() (flask.sessions.SessionInterface method)


      	get_cookie_secure() (flask.sessions.SessionInterface method)


      	get_expiration_time() (flask.sessions.SessionInterface method)


      	get_flashed_messages() (in module flask)


  

  	
      	get_json() (flask.Request method)


      	get_namespace() (flask.Config method)


      	get_send_file_max_age() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	get_template_attribute() (in module flask)


      	got_first_request (flask.Flask attribute)


      	got_request_exception (in module flask)


      	group() (flask.cli.AppGroup method)


  





H


  	
      	handle_exception() (flask.Flask method)


      	handle_http_exception() (flask.Flask method)


      	handle_url_build_error() (flask.Flask method)


      	handle_user_exception() (flask.Flask method)


      	has_app_context() (in module flask)


  

  	
      	has_request_context() (in module flask)


      	has_static_folder (flask.Blueprint attribute)

      
        	(flask.Flask attribute)


      


      	headers (flask.Request attribute)

      
        	(flask.Response attribute)


      


  





I


  	
      	init_jinja_globals() (flask.Flask method)


      	inject_url_defaults() (flask.Flask method)


      	instance_path (flask.Flask attribute)


  

  	
      	is_json (flask.Request attribute)


      	is_null_session() (flask.sessions.SessionInterface method)


      	is_xhr (flask.Request attribute)


      	iter_blueprints() (flask.Flask method)


  





J


  	
      	jinja_env (flask.Flask attribute)


      	jinja_environment (flask.Flask attribute)


      	jinja_loader (flask.Blueprint attribute)

      
        	(flask.Flask attribute)


      


      	jinja_options (flask.Flask attribute)


  

  	
      	json (flask.Request attribute)


      	json_decoder (flask.Flask attribute)


      	json_encoder (flask.Flask attribute)


      	JSONDecoder (class in flask.json)


      	JSONEncoder (class in flask.json)


      	jsonify() (in module flask.json)


  





K


  	
      	key_derivation (flask.sessions.SecureCookieSessionInterface attribute)


  





L


  	
      	load() (in module flask.json)


      	load_app() (flask.cli.ScriptInfo method)


      	loads() (in module flask.json)


  

  	
      	log_exception() (flask.Flask method)


      	logger (flask.Flask attribute)


      	logger_name (flask.Flask attribute)


  





M


  	
      	make_config() (flask.Flask method)


      	make_default_options_response() (flask.Flask method)


      	make_null_session() (flask.Flask method)

      
        	(flask.sessions.SessionInterface method)


      


      	make_response() (flask.Flask method)

      
        	(in module flask)


      


      	make_setup_state() (flask.Blueprint method)


      	make_shell_context() (flask.Flask method)


      	Markup (class in flask)


  

  	
      	match_request() (flask.ctx.RequestContext method)


      	max_content_length (flask.Request attribute)


      	message_flashed (in module flask)


      	method (flask.Request attribute)


      	methods (flask.views.View attribute)


      	MethodView (class in flask.views)


      	mimetype (flask.Response attribute)


      	modified (flask.session attribute)

      
        	(flask.sessions.SessionMixin attribute)


      


      	module (flask.Request attribute)


  





N


  	
      	name (flask.Flask attribute)


      	new (flask.session attribute)

      
        	(flask.sessions.SessionMixin attribute)


      


  

  	
      	null_session_class (flask.sessions.SessionInterface attribute)


      	NullSession (class in flask.sessions)


  





O


  	
      	on_json_loading_failed() (flask.Request method)


      	open_instance_resource() (flask.Flask method)


      	open_resource() (flask.Blueprint method)

      
        	(flask.Flask method)


      


  

  	
      	open_session() (flask.Flask method)

      
        	(flask.sessions.SessionInterface method)


      


      	options (flask.blueprints.BlueprintSetupState attribute)


  





P


  	
      	pass_script_info() (in module flask.cli)


      	path (flask.Request attribute)


      	permanent (flask.session attribute)

      
        	(flask.sessions.SessionMixin attribute)


      


      	permanent_session_lifetime (flask.Flask attribute)


      	pickle_based (flask.sessions.SessionInterface attribute)


      	pop() (flask.ctx.AppContext method)

      
        	(flask.ctx.RequestContext method)


      


  

  	
      	preprocess_request() (flask.Flask method)


      	preserve_context_on_exception (flask.Flask attribute)


      	process_response() (flask.Flask method)


      	propagate_exceptions (flask.Flask attribute)


      	push() (flask.ctx.AppContext method)

      
        	(flask.ctx.RequestContext method)


      


      	
    Python Enhancement Proposals

      
        	PEP 8


      


  





R


  	
      	record() (flask.Blueprint method)


      	record_once() (flask.Blueprint method)


      	redirect() (in module flask)


      	register() (flask.Blueprint method)


      	register_blueprint() (flask.Flask method)


      	register_error_handler() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	render_template() (in module flask)


      	render_template_string() (in module flask)


      	Request (class in flask)


      	request (class in flask)


      	request_class (flask.Flask attribute)


      	request_context() (flask.Flask method)


  

  	
      	request_finished (in module flask)


      	request_started (in module flask)


      	request_tearing_down (in module flask)


      	RequestContext (class in flask.ctx)


      	Response (class in flask)


      	response_class (flask.Flask attribute)


      	
    RFC

      
        	RFC 822


      


      	route() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	routing_exception (flask.Request attribute)


      	run() (flask.Flask method)


      	run_command (in module flask.cli)


  





S


  	
      	safe_join() (in module flask)


      	salt (flask.sessions.SecureCookieSessionInterface attribute)


      	save_session() (flask.Flask method)

      
        	(flask.sessions.SessionInterface method)


      


      	script_root (flask.Request attribute)


      	ScriptInfo (class in flask.cli)


      	secret_key (flask.Flask attribute)


      	SecureCookieSession (class in flask.sessions)


      	SecureCookieSessionInterface (class in flask.sessions)


      	select_jinja_autoescape() (flask.Flask method)


      	send_file() (in module flask)


      	send_file_max_age_default (flask.Flask attribute)


      	send_from_directory() (in module flask)


      	send_static_file() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	serializer (flask.sessions.SecureCookieSessionInterface attribute)


      	session (class in flask)


      	session_class (flask.sessions.SecureCookieSessionInterface attribute)


      	session_cookie_name (flask.Flask attribute)


      	session_interface (flask.Flask attribute)


  

  	
      	session_json_serializer (in module flask.sessions)


      	session_transaction() (flask.testing.FlaskClient method)


      	SessionInterface (class in flask.sessions)


      	SessionMixin (class in flask.sessions)


      	set_cookie() (flask.Response method)


      	shell_command (in module flask.cli)


      	shell_context_processor() (flask.Flask method)


      	shell_context_processors (flask.Flask attribute)


      	should_ignore_error() (flask.Flask method)


      	should_set_cookie() (flask.sessions.SessionInterface method)


      	signal() (flask.signals.Namespace method)


      	signals.Namespace (class in flask)


      	signals.signals_available (in module flask)


      	static_folder (flask.Blueprint attribute)

      
        	(flask.Flask attribute)


      


      	status (flask.Response attribute)


      	status_code (flask.Response attribute)


      	stream (flask.Request attribute)


      	stream_with_context() (in module flask)


      	striptags() (flask.Markup method)


      	subdomain (flask.blueprints.BlueprintSetupState attribute)


  





T


  	
      	teardown_app_request() (flask.Blueprint method)


      	teardown_appcontext() (flask.Flask method)


      	teardown_appcontext_funcs (flask.Flask attribute)


      	teardown_request() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	teardown_request_funcs (flask.Flask attribute)


      	template_context_processors (flask.Flask attribute)


      	template_filter() (flask.Flask method)


  

  	
      	template_global() (flask.Flask method)


      	template_rendered (in module flask)


      	template_test() (flask.Flask method)


      	test_client() (flask.Flask method)


      	test_client_class (flask.Flask attribute)


      	test_request_context() (flask.Flask method)


      	testing (flask.Flask attribute)


      	trap_http_exception() (flask.Flask method)


  





U


  	
      	unescape() (flask.Markup method)


      	update_template_context() (flask.Flask method)


      	url (flask.Request attribute)


      	url_build_error_handlers (flask.Flask attribute)


      	url_default_functions (flask.Flask attribute)


      	url_defaults (flask.blueprints.BlueprintSetupState attribute)


      	url_defaults() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	url_for() (in module flask)


  

  	
      	url_map (flask.Flask attribute)


      	url_prefix (flask.blueprints.BlueprintSetupState attribute)


      	url_root (flask.Request attribute)


      	url_rule (flask.Request attribute)


      	url_rule_class (flask.Flask attribute)


      	url_value_preprocessor() (flask.Blueprint method)

      
        	(flask.Flask method)


      


      	url_value_preprocessors (flask.Flask attribute)


      	use_x_sendfile (flask.Flask attribute)


  





V


  	
      	values (flask.Request attribute)


      	View (class in flask.views)


  

  	
      	view_args (flask.Request attribute)


      	view_functions (flask.Flask attribute)


  





W


  	
      	with_appcontext() (in module flask.cli)


  

  	
      	wsgi_app() (flask.Flask method)


  





Y


  	
      	YOURAPPLICATION_SETTINGS


  







          

      

      

    

  

    
      
          
            
  
Flask Documentation


User’s Guide

This part of the documentation, which is mostly prose, begins with some
background information about Flask, then focuses on step-by-step
instructions for web development with Flask.



	Foreword
	What does “micro” mean?

	Configuration and Conventions

	Growing with Flask





	Foreword for Experienced Programmers
	Thread-Locals in Flask

	Develop for the Web with Caution

	Python 3 Support in Flask





	Installation
	virtualenv

	System-Wide Installation

	Living on the Edge

	pip and setuptools on Windows





	Quickstart
	A Minimal Application

	What to do if the Server does not Start

	Debug Mode

	Routing

	Static Files

	Rendering Templates

	Accessing Request Data

	Redirects and Errors

	About Responses

	Sessions

	Message Flashing

	Logging

	Hooking in WSGI Middlewares

	Using Flask Extensions

	Deploying to a Web Server





	Tutorial
	Introducing Flaskr

	Step 0: Creating The Folders

	Step 1: Database Schema

	Step 2: Application Setup Code

	Step 3: Installing flaskr as a Package

	Step 4: Database Connections

	Step 5: Creating The Database

	Step 6: The View Functions

	Step 7: The Templates

	Step 8: Adding Style

	Bonus: Testing the Application





	Templates
	Jinja Setup

	Standard Context

	Standard Filters

	Controlling Autoescaping

	Registering Filters

	Context Processors





	Testing Flask Applications
	The Application

	The Testing Skeleton

	The First Test

	Logging In and Out

	Test Adding Messages

	Other Testing Tricks

	Faking Resources and Context

	Keeping the Context Around

	Accessing and Modifying Sessions





	Application Errors
	Error Logging Tools

	Error handlers

	Error Mails

	Logging to a File

	Controlling the Log Format

	Other Libraries





	Debugging Application Errors
	When in Doubt, Run Manually

	Working with Debuggers





	Configuration Handling
	Configuration Basics

	Builtin Configuration Values

	Configuring from Files

	Configuration Best Practices

	Development / Production

	Instance Folders





	Signals
	Subscribing to Signals

	Creating Signals

	Sending Signals

	Signals and Flask’s Request Context

	Decorator Based Signal Subscriptions

	Core Signals





	Pluggable Views
	Basic Principle

	Method Hints

	Method Based Dispatching

	Decorating Views

	Method Views for APIs





	The Application Context
	Purpose of the Application Context

	Creating an Application Context

	Locality of the Context

	Context Usage





	The Request Context
	Diving into Context Locals

	How the Context Works

	Callbacks and Errors

	Teardown Callbacks

	Notes On Proxies

	Context Preservation on Error





	Modular Applications with Blueprints
	Why Blueprints?

	The Concept of Blueprints

	My First Blueprint

	Registering Blueprints

	Blueprint Resources

	Building URLs

	Error Handlers





	Flask Extensions
	Finding Extensions

	Using Extensions

	Building Extensions

	Flask Before 0.8





	Command Line Interface
	Basic Usage

	Virtualenv Integration

	Debug Flag

	Running a Shell

	Custom Commands

	Application Context

	Factory Functions

	Custom Scripts

	CLI Plugins





	Development Server
	Command Line

	In Code





	Working with the Shell
	Command Line Interface

	Creating a Request Context

	Firing Before/After Request

	Further Improving the Shell Experience





	Patterns for Flask
	Larger Applications

	Application Factories

	Application Dispatching

	Implementing API Exceptions

	Using URL Processors

	Deploying with Setuptools

	Deploying with Fabric

	Using SQLite 3 with Flask

	SQLAlchemy in Flask

	Uploading Files

	Caching

	View Decorators

	Form Validation with WTForms

	Template Inheritance

	Message Flashing

	AJAX with jQuery

	Custom Error Pages

	Lazily Loading Views

	MongoKit in Flask

	Adding a favicon

	Streaming Contents

	Deferred Request Callbacks

	Adding HTTP Method Overrides

	Request Content Checksums

	Celery Based Background Tasks

	Subclassing Flask





	Deployment Options
	Hosted options

	Self-hosted options





	Becoming Big
	Read the Source.

	Hook. Extend.

	Subclass.

	Wrap with middleware.

	Fork.

	Scale like a pro.

	Discuss with the community.












API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.



	API
	Application Object

	Blueprint Objects

	Incoming Request Data

	Response Objects

	Sessions

	Session Interface

	Test Client

	Application Globals

	Useful Functions and Classes

	Message Flashing

	JSON Support

	Template Rendering

	Configuration

	Extensions

	Stream Helpers

	Useful Internals

	Signals

	Class-Based Views

	URL Route Registrations

	View Function Options

	Command Line Interface












Additional Notes

Design notes, legal information and changelog are here for the interested.



	Design Decisions in Flask
	The Explicit Application Object

	The Routing System

	One Template Engine

	Micro with Dependencies

	Thread Locals

	What Flask is, What Flask is Not





	HTML/XHTML FAQ
	History of XHTML

	History of HTML5

	HTML versus XHTML

	What does “strict” mean?

	New technologies in HTML5

	What should be used?





	Security Considerations
	Cross-Site Scripting (XSS)

	Cross-Site Request Forgery (CSRF)

	JSON Security





	Unicode in Flask
	Automatic Conversion

	The Golden Rule

	Encoding and Decoding Yourself

	Configuring Editors





	Flask Extension Development
	Anatomy of an Extension

	“Hello Flaskext!”

	Initializing Extensions

	The Extension Code

	Using _app_ctx_stack

	Teardown Behavior

	Learn from Others

	Approved Extensions

	Extension Import Transition





	Pocoo Styleguide
	General Layout

	Expressions and Statements

	Naming Conventions

	Docstrings

	Comments





	Python 3 Support

	Upgrading to Newer Releases
	Version 0.12

	Version 0.11

	Version 0.10

	Version 0.9

	Version 0.8

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3





	Flask Changelog
	Version 0.13

	Version 0.12.2

	Version 0.12.1

	Version 0.12

	Version 0.11.2

	Version 0.11.1

	Version 0.11

	Version 0.10.2

	Version 0.10.1

	Version 0.10

	Version 0.9

	Version 0.8.1

	Version 0.8

	Version 0.7.3

	Version 0.7.2

	Version 0.7.1

	Version 0.7

	Version 0.6.1

	Version 0.6

	Version 0.5.2

	Version 0.5.1

	Version 0.5

	Version 0.4

	Version 0.3.1

	Version 0.3

	Version 0.2

	Version 0.1





	License
	Authors

	General License Definitions

	Flask License

	Flask Artwork License















          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Welcome to Flask


        		Foreword
          
          		What does “micro” mean?


          		Configuration and Conventions


          		Growing with Flask


          


        


        		Foreword for Experienced Programmers
          
          		Thread-Locals in Flask


          		Develop for the Web with Caution


          		Python 3 Support in Flask


          


        


        		Installation
          
          		virtualenv


          		System-Wide Installation


          		Living on the Edge


          		pip and setuptools on Windows


          


        


        		Quickstart
          
          		A Minimal Application


          		What to do if the Server does not Start
            
            		Old Version of Flask


            		Invalid Import Name


            


          


          		Debug Mode


          		Routing
            
            		Variable Rules


            		URL Building


            		HTTP Methods


            


          


          		Static Files


          		Rendering Templates


          		Accessing Request Data
            
            		Context Locals


            		The Request Object


            		File Uploads


            		Cookies


            


          


          		Redirects and Errors


          		About Responses


          		Sessions


          		Message Flashing


          		Logging


          		Hooking in WSGI Middlewares


          		Using Flask Extensions


          		Deploying to a Web Server


          


        


        		Tutorial
          
          		Introducing Flaskr


          		Step 0: Creating The Folders


          		Step 1: Database Schema


          		Step 2: Application Setup Code


          		Step 3: Installing flaskr as a Package


          		Step 4: Database Connections


          		Step 5: Creating The Database


          		Step 6: The View Functions
            
            		Show Entries


            		Add New Entry


            		Login and Logout


            


          


          		Step 7: The Templates
            
            		layout.html


            		show_entries.html


            		login.html


            


          


          		Step 8: Adding Style


          		Bonus: Testing the Application
            
            		Adding tests to flaskr


            		Running the tests


            		Testing + setuptools


            


          


          


        


        		Templates
          
          		Jinja Setup


          		Standard Context


          		Standard Filters


          		Controlling Autoescaping


          		Registering Filters


          		Context Processors


          


        


        		Testing Flask Applications
          
          		The Application


          		The Testing Skeleton


          		The First Test


          		Logging In and Out


          		Test Adding Messages


          		Other Testing Tricks


          		Faking Resources and Context


          		Keeping the Context Around


          		Accessing and Modifying Sessions


          


        


        		Application Errors
          
          		Error Logging Tools


          		Error handlers
            
            		Registering


            		Handling


            


          


          		Error Mails


          		Logging to a File


          		Controlling the Log Format
            
            		Email


            		File logging


            		Complex Log Formatting


            


          


          		Other Libraries


          


        


        		Debugging Application Errors
          
          		When in Doubt, Run Manually


          		Working with Debuggers


          


        


        		Configuration Handling
          
          		Configuration Basics


          		Builtin Configuration Values


          		Configuring from Files


          		Configuration Best Practices


          		Development / Production


          		Instance Folders


          


        


        		Signals
          
          		Subscribing to Signals


          		Creating Signals


          		Sending Signals


          		Signals and Flask's Request Context


          		Decorator Based Signal Subscriptions


          		Core Signals


          


        


        		Pluggable Views
          
          		Basic Principle


          		Method Hints


          		Method Based Dispatching


          		Decorating Views


          		Method Views for APIs


          


        


        		The Application Context
          
          		Purpose of the Application Context


          		Creating an Application Context


          		Locality of the Context


          		Context Usage


          


        


        		The Request Context
          
          		Diving into Context Locals


          		How the Context Works


          		Callbacks and Errors


          		Teardown Callbacks


          		Notes On Proxies


          		Context Preservation on Error


          


        


        		Modular Applications with Blueprints
          
          		Why Blueprints?


          		The Concept of Blueprints


          		My First Blueprint


          		Registering Blueprints


          		Blueprint Resources
            
            		Blueprint Resource Folder


            		Static Files


            		Templates


            


          


          		Building URLs


          		Error Handlers


          


        


        		Flask Extensions
          
          		Finding Extensions


          		Using Extensions


          		Building Extensions


          		Flask Before 0.8


          


        


        		Command Line Interface
          
          		Basic Usage


          		Virtualenv Integration


          		Debug Flag


          		Running a Shell


          		Custom Commands


          		Application Context


          		Factory Functions


          		Custom Scripts


          		CLI Plugins


          


        


        		Development Server
          
          		Command Line


          		In Code


          


        


        		Working with the Shell
          
          		Command Line Interface


          		Creating a Request Context


          		Firing Before/After Request


          		Further Improving the Shell Experience


          


        


        		Patterns for Flask
          
          		Larger Applications
            
            		Simple Packages


            		Working with Blueprints


            


          


          		Application Factories
            
            		Basic Factories


            		Factories & Extensions


            		Using Applications


            		Factory Improvements


            


          


          		Application Dispatching
            
            		Working with this Document


            		Combining Applications


            		Dispatch by Subdomain


            		Dispatch by Path


            


          


          		Implementing API Exceptions
            
            		Simple Exception Class


            		Registering an Error Handler


            		Usage in Views


            


          


          		Using URL Processors
            
            		Internationalized Application URLs


            		Internationalized Blueprint URLs


            


          


          		Deploying with Setuptools
            
            		Basic Setup Script


            		Tagging Builds


            		Distributing Resources


            		Declaring Dependencies


            		Installing / Developing


            


          


          		Deploying with Fabric
            
            		Creating the first Fabfile


            		Running Fabfiles


            		The WSGI File


            		The Configuration File


            		First Deployment


            		Next Steps


            


          


          		Using SQLite 3 with Flask
            
            		Connect on Demand


            		Easy Querying


            		Initial Schemas


            


          


          		SQLAlchemy in Flask
            
            		Flask-SQLAlchemy Extension


            		Declarative


            		Manual Object Relational Mapping


            		SQL Abstraction Layer


            


          


          		Uploading Files
            
            		A Gentle Introduction


            		Improving Uploads


            		Upload Progress Bars


            		An Easier Solution


            


          


          		Caching
            
            		Setting up a Cache


            		Using a Cache


            


          


          		View Decorators
            
            		Login Required Decorator


            		Caching Decorator


            		Templating Decorator


            		Endpoint Decorator


            


          


          		Form Validation with WTForms
            
            		The Forms


            		In the View


            		Forms in Templates


            


          


          		Template Inheritance
            
            		Base Template


            		Child Template


            


          


          		Message Flashing
            
            		Simple Flashing


            		Flashing With Categories


            		Filtering Flash Messages


            


          


          		AJAX with jQuery
            
            		Loading jQuery


            		Where is My Site?


            		JSON View Functions


            		The HTML


            


          


          		Custom Error Pages
            
            		Common Error Codes


            		Error Handlers


            


          


          		Lazily Loading Views
            
            		Converting to Centralized URL Map


            		Loading Late


            


          


          		MongoKit in Flask
            
            		Declarative


            		PyMongo Compatibility Layer


            


          


          		Adding a favicon
            
            		See also


            


          


          		Streaming Contents
            
            		Basic Usage


            		Streaming from Templates


            		Streaming with Context


            


          


          		Deferred Request Callbacks
            
            		The Decorator


            		Calling the Deferred


            		A Practical Example


            


          


          		Adding HTTP Method Overrides


          		Request Content Checksums


          		Celery Based Background Tasks
            
            		Installing Celery


            		Configuring Celery


            		Minimal Example


            		Running the Celery Worker


            


          


          		Subclassing Flask


          


        


        		Deployment Options
          
          		Hosted options


          		Self-hosted options
            
            		mod_wsgi (Apache)


            		Standalone WSGI Containers


            		uWSGI


            		FastCGI


            		CGI


            


          


          


        


        		Becoming Big
          
          		Read the Source.


          		Hook. Extend.


          		Subclass.


          		Wrap with middleware.


          		Fork.


          		Scale like a pro.


          		Discuss with the community.


          


        


        		API
          
          		Application Object


          		Blueprint Objects


          		Incoming Request Data


          		Response Objects


          		Sessions


          		Session Interface


          		Test Client


          		Application Globals


          		Useful Functions and Classes


          		Message Flashing


          		JSON Support


          		Template Rendering


          		Configuration


          		Extensions


          		Stream Helpers


          		Useful Internals


          		Signals


          		Class-Based Views


          		URL Route Registrations


          		View Function Options


          		Command Line Interface


          


        


        		Design Decisions in Flask
          
          		The Explicit Application Object


          		The Routing System


          		One Template Engine


          		Micro with Dependencies


          		Thread Locals


          		What Flask is, What Flask is Not


          


        


        		HTML/XHTML FAQ
          
          		History of XHTML


          		History of HTML5


          		HTML versus XHTML


          		What does “strict” mean?


          		New technologies in HTML5


          		What should be used?


          


        


        		Security Considerations
          
          		Cross-Site Scripting (XSS)


          		Cross-Site Request Forgery (CSRF)


          		JSON Security


          


        


        		Unicode in Flask
          
          		Automatic Conversion


          		The Golden Rule


          		Encoding and Decoding Yourself


          		Configuring Editors


          


        


        		Flask Extension Development
          
          		Anatomy of an Extension


          		“Hello Flaskext!”
            
            		setup.py


            		flask_sqlite3.py


            


          


          		Initializing Extensions


          		The Extension Code


          		Using _app_ctx_stack


          		Teardown Behavior


          		Learn from Others


          		Approved Extensions


          		Extension Import Transition


          


        


        		Pocoo Styleguide
          
          		General Layout


          		Expressions and Statements


          		Naming Conventions


          		Docstrings


          		Comments


          


        


        		Python 3 Support


        		Upgrading to Newer Releases
          
          		Version 0.12
            
            		Changes to send_file


            


          


          		Version 0.11
            
            		Debugging


            		Error handling


            		Templating


            		Extension imports


            


          


          		Version 0.10


          		Version 0.9


          		Version 0.8


          		Version 0.7
            
            		Bug in Request Locals


            		Upgrading to new Teardown Handling


            		Manual Error Handler Attaching


            		Blueprint Support


            


          


          		Version 0.6


          		Version 0.5


          		Version 0.4


          		Version 0.3
            
            		Configuration Support


            		Logging Integration


            		Categories for Flash Messages


            


          


          


        


        		Flask Changelog
          
          		Version 0.13


          		Version 0.12.2


          		Version 0.12.1


          		Version 0.12


          		Version 0.11.2


          		Version 0.11.1


          		Version 0.11


          		Version 0.10.2


          		Version 0.10.1


          		Version 0.10


          		Version 0.9


          		Version 0.8.1


          		Version 0.8


          		Version 0.7.3


          		Version 0.7.2


          		Version 0.7.1


          		Version 0.7


          		Version 0.6.1


          		Version 0.6


          		Version 0.5.2


          		Version 0.5.1


          		Version 0.5


          		Version 0.4


          		Version 0.3.1


          		Version 0.3


          		Version 0.2


          		Version 0.1


          


        


        		License
          
          		Authors
            
            		Development Lead


            		Patches and Suggestions


            


          


          		General License Definitions


          		Flask License


          		Flask Artwork License


          


        


      


    
  

_images/logo-full.png
Flask

web development,
one drop at a time






_images/yes.png





_static/logo-full.png
Flask

web development,
one drop at a time






_images/flaskr.png
Flaskr x

(€ > i C O localhost:5000/ ve[»

Flaskr

New entry was successfully posted
Title:

Text:

Hello World
This is my first entry in this Flaskr micro blog.






_images/no.png





_static/up.png





_static/minus.png





_static/comment-close.png





_images/debugger.png
LN vr———

€ 5 A C O localhost:5000/

TypeError

TypeError: cannot concatenate 'str' and ‘NoneType' objects

Traceback (most recent call last)

File "/Users/mitsuhiko/Development/flask/flask.py", line 650, in _call_
return self.wsgi_app(environ, start_response)
File "/Users/mitsuhiko/Development/werkzeug-main/werkzeug/wsgi.py", line 406, in
_call_
return self.app(environ, start_response)

File "/Users/mitsuhiko/Development/flask/flask.py", line 616, in wsgi_app
PV = self.dispatch_request()

File "/Users/mitsuhiko/Development/flask/flask.py", line 535, in dispatch_request
return self.view_functions[endpoint] (**values)

File "/Users/mitsuhiko/Development/flask/test.py", line 8, in index
return ‘Hello ' + name

[console ready]

>>> type(name)

<type_NoneType'>

> ) v






_static/flaskr.png
Flaskr x

(€ > i C O localhost:5000/ ve[»

Flaskr

New entry was successfully posted
Title:

Text:

Hello World
This is my first entry in this Flaskr micro blog.






_static/no.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up-pressed.png





_static/file.png





_static/plus.png





_static/touch-icon.png





_static/debugger.png
LN vr———

€ 5 A C O localhost:5000/

TypeError

TypeError: cannot concatenate 'str' and ‘NoneType' objects

Traceback (most recent call last)

File "/Users/mitsuhiko/Development/flask/flask.py", line 650, in _call_
return self.wsgi_app(environ, start_response)
File "/Users/mitsuhiko/Development/werkzeug-main/werkzeug/wsgi.py", line 406, in
_call_
return self.app(environ, start_response)

File "/Users/mitsuhiko/Development/flask/flask.py", line 616, in wsgi_app
PV = self.dispatch_request()

File "/Users/mitsuhiko/Development/flask/flask.py", line 535, in dispatch_request
return self.view_functions[endpoint] (**values)

File "/Users/mitsuhiko/Development/flask/test.py", line 8, in index
return ‘Hello ' + name

[console ready]

>>> type(name)

<type_NoneType'>

> ) v






_static/flask.png





_static/down.png





_static/yes.png





_static/comment.png





